Skip to main content

Application to the Analysis of Heat Exchanger Networks

  • Chapter
  • First Online:
Network-Based Analysis of Dynamical Systems

Abstract

This work proposes a network science-based analysis tool for the qualification of controllability and observability of HENs. With the proposed methodology, the main characteristics of HEN design methods are determined, the effect of structural properties of HENs on their dynamical behaviour is revealed, and the potentials of the network-based HEN representations are discussed. Our findings are based on the systematic analysis of almost 50 benchmark problems related to 20 different design methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, S., Smith, R.: Targets and design for minimum number of shells in heat exchanger networks. Chem. Eng. Res. Des. 67(5), 481–494 (1989)

    Google Scholar 

  2. Ahmad, S., Linnhoff, B.: Supertargeting: different process structures for different economics. J. Energy Resour. Technol. 111(3), 131–136 (1989)

    Article  Google Scholar 

  3. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10(5), 053039 (2008)

    Article  Google Scholar 

  4. Bagajewicz, M.J., Manousiouthakis, V.: Mass/heat-exchange network representation of distillation networks. AIChE J 38(11), 1769–1800 (1992)

    Article  Google Scholar 

  5. Bagajewicz, M.J., Pham, R., Manousiouthakis, V.: On the state space approach to mass/heat exchanger network design. Chem. Eng. Sci. 53(14), 2595–2621 (1998)

    Article  Google Scholar 

  6. Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89(5), 399–404 (1982)

    Article  MathSciNet  Google Scholar 

  7. Bonchev, D., Buck, G.A.: Quantitative measures of network complexity. Complexity in Chemistry, Biology, and Ecology, pp. 191–235. Springer, Springer Science & Business Media, USA (2005)

    Google Scholar 

  8. Calandranis, J., Stephanopoulos, G.: Structural operability analysis of heat exchanger networks. Chem. Eng. Res. Des. (Icheme), 64(5), 347–364 (1986)

    Google Scholar 

  9. Chen, Y., Grossmann, I.E., Miller, D.C.: Computational strategies for large-scale milp transshipment models for heat exchanger network synthesis. Comput. Chem. Eng. 82, 68–83 (2015)

    Google Scholar 

  10. Chen, Y., Grossmann, I.E., Miller, D.C.: Large-scale milp transshipment models for heat exchanger network synthesis. Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php (2015)

  11. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidlines for Process Integration and Product Improvement. Addison-Wesley Longman Publishing Co., Inc., USA (2003)

    Google Scholar 

  12. Ciric, A.R., Floudas, C.A.: A retrofit approach for heat exchanger networks. Comput. Chem. Eng. 13(6), 703–715 (1989)

    Article  Google Scholar 

  13. Colberg, R.D., Morari, M.: Area and capital cost targets for heat exchanger network synthesis with constrained matches and unequal heat transfer coefficients. Comput. Chem. Eng. 14(1), 1–22 (1990)

    Article  Google Scholar 

  14. Daoutidis, P., Kravaris, C.: Structural evaluation of control configurations for multivariable nonlinear processes. Chem. Eng. Sci. 47(5), 1091–1107 (1992)

    Google Scholar 

  15. Dehmer, M., Kraus, V., Emmert-Streib, F., Pickl, S.: Quantitative Graph Theory. CRC Press, USA (2014)

    Google Scholar 

  16. Dolan, W.B., Cummings, P.T., Le Van, M.D.: Algorithmic efficiency of simulated annealing for heat exchanger network design. Comput. Chem. Eng. 14(10), 1039–1050 (1990)

    Article  Google Scholar 

  17. Düştegör, D., Frisk, E., Cocquempot, V., Krysander, M., Staroswiecki, M.: Structural analysis of fault isolability in the damadics benchmark. Control Eng. Pract. 14(6), 597–608 (2006)

    Google Scholar 

  18. Escobar, M., Trierweiler, J.O., Grossmann, I.E.: Simultaneous synthesis of heat exchanger networks with operability considerations: flexibility and controllability. Comput. Chem. Eng. 55, 158–180 (2013)

    Google Scholar 

  19. Farhanieh, B., Sunden, B.: Analysis of an existing heat exchanger network and effects of heat pump installations. Heat Recover. Syst. CHP 10(3), 285–296 (1990)

    Google Scholar 

  20. Furman, K.C., Sahinidis, N.V.: Approximation algorithms for the minimum number of matches problem in heat exchanger network synthesis. Ind. Eng. Chem. Res. 43(14), 3554–3565 (2004)

    Google Scholar 

  21. Grossmann, I.E., Sargent, R.W.H.: Optimum design of heat exchanger networks. Comput. Chem. Eng. 2(1), 1–7 (1978)

    Google Scholar 

  22. Gundersen, T., Grossmann, I.E.: Improved optimization strategies for automated heat exchanger network synthesis through physical insights. Comput. Chem. Eng. 14(9), 925–944 (1990)

    Google Scholar 

  23. Hall, S.G., Ahmad, S., Smith, R.: Capital cost targets for heat exchanger networks comprising mixed materials of construction, pressure ratings and exchanger types. Comput. Chem. Eng. 14(3), 319–335 (1990)

    Article  Google Scholar 

  24. Jamaluddin, K., Wan Alwi, S.R., Manan, Z.A., Klemes, JJ.: Pinch analysis methodology for trigeneration with energy storage system design. Chem. Eng. Tran. 70, 1885–1890 (2018)

    Google Scholar 

  25. Kemp, I.C.: Pinch analysis and process integration: a user guide on process integration for the efficient use of energy. Elsevier, USA (2011)

    Google Scholar 

  26. Klemes, J.J.: Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Elsevier, UK (2013)

    Google Scholar 

  27. Klemes, J.J., Varbanov, P.S., Walmsley, T.G., Jia, X.: New directions in the implementation of pinch methodology (pm). Renew. Sustain. Energy Rev. 98, 439– 468 (2018)

    Google Scholar 

  28. Latva-Koivisto, A.M.: Finding a complexity measure for business process models. Helsinki University of Technology, Systems Analysis Laboratory (2001)

    Google Scholar 

  29. Lee, K.-F., Masso, A.H., Rudd, D.F.: Branch and bound synthesis of integrated process designs. Ind. Eng. Chem. Fundam. 9(1), 48–58 (1970)

    Google Scholar 

  30. Leitold, D., Vathy-Fogarassy, Á., Abonyi, J.: Controllability and observability in complex networks-the effect of connection types. Sci. Rep. 7, 151 (2017)

    Google Scholar 

  31. Leitold, D., Vathy-Fogarassy, A., Abonyi, J.: Network distance-based simulated annealing and fuzzy clustering for sensor placement ensuring observability and minimal relative degree. Sensors 18(9), 3096 (2018)

    Google Scholar 

  32. Leitold, Dá., Vathy-Fogarassy, Á., Abonyi, J.: Evaluation of the complexity, controllability and observability of heat exchanger networks based on structural analysis of network representations. Energies 12(3), 513 (2019)

    Google Scholar 

  33. Letsios, D., Kouyialis, G., Misener, R.: Heuristics with performance guarantees for the minimum number of matches problem in heat recovery network design. Comput. Chem. Eng. 113, 57–85 (2018)

    Google Scholar 

  34. Linnhoff, B., Ahmad, S.: Supertargeting: optimum synthesis of energy management systems. J. Energy Resour. Technol. 111(3), 121–130 (1989)

    Article  Google Scholar 

  35. Linnhoff, B., Flower, J.R.: Synthesis of heat exchanger networks: I. systematic generation of energy optimal networks. AIChE J 24(4), 633–642 (1978)

    Google Scholar 

  36. Linnhoff, B., Hindmarsh, E.: The pinch design method for heat exchanger networks. Chem. Eng. Sci. 38(5), 745–763 (1983)

    Google Scholar 

  37. Linnhoff, B., Mason, D.R., Wardle, I.: Understanding heat exchanger networks. Comput. Chem. Eng. 3(1–4), 295–302 (1979)

    Google Scholar 

  38. Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473(7346), 167 (2011)

    Google Scholar 

  39. Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Observability of complex systems. Proc. Natl. Acad. Sci. 110(7), 2460–2465 (2013)

    Google Scholar 

  40. Masso, A.H., Rudd, D.F.: The synthesis of system designs. ii. heuristic structuring. AIChE J 15(1), 10–17 (1969)

    Google Scholar 

  41. Miranda, C.B., Costa Costa, C.B.B., Andrade, C.M.G., Ravagnani, M.A.S.S.: Controllability and resiliency analysis in heat exchanger networks. Chem. Eng. Trans. 61, 1609–1614 (2017)

    Google Scholar 

  42. Mocsny, D., Govind, R.: Decomposition strategy for the synthesis of minimum-unit heat exchanger networks. AIChE J. 30(5), 853–856 (1984)

    Google Scholar 

  43. Nishida, N., Stephanopoulos, G., Westerberg, A.W.: A review of process synthesis. AIChE J. 27(3), 321–351 (1981)

    Google Scholar 

  44. Pho, T.K., Lapidus, L.: Topics in computer-aided design: Part ii. synthesis of optimal heat exchanger networks by tree searching algorithms. AIChE J. 19(6), 1182–1189 (1973)

    Google Scholar 

  45. Polley, G.T., Heggs, P.J.: Don’t let the pinch pinch you. Chem. Eng. Prog. 95(12), 27–36 (1999)

    Google Scholar 

  46. Saboo, A.K., Morari, M., Woodcock, D.C.: Design of resilient processing plants-viii. a resilience index for heat exchanger networks. Chem. Eng. Sci. 40(8), 1553–1565 (1985)

    Google Scholar 

  47. Shenoy, U.V.: Heat Exchanger Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Professional Publishing, USA (1995)

    Google Scholar 

  48. Svensson, E., Eriksson, K., Bengtsson, F., Wik, T.: Design of heat exchanger networks with good controllability. Technical Report, CIT Industriell Energi AB, Sweden (2018)

    Google Scholar 

  49. Tantimuratha, L., Kokossis, A.C., Müller, F.U.: The heat exchanger network design as a paradigm of technology integration. Appl. Therm. Eng. 20(15–16), 1589–1605 (2000)

    Article  Google Scholar 

  50. Trivedi, K.K., O’Neill, B.K., Roach, J.R.: Synthesis of heat exchanger networks featuring multiple pinch points. Comput. Chem. Eng. 13(3), 291–294 (1989)

    Article  Google Scholar 

  51. Trivedi, K.K., O’Neill, B.K., Roach, J.R., Wood, R.M.: Systematic energy relaxation in mer heat exchanger networks. Comput. Chem. Eng. 14(6), 601–611 (1990)

    Article  Google Scholar 

  52. Varbanov, P.S., Walmsley, T.G., Klemes, J.J., Wang, Y., Jia, X.-X.: Footprint reduction strategy for industrial site operation. Chem. Eng. Trans. 67, 607–612 (2018)

    Google Scholar 

  53. Varga, E.I., Hangos, K.M.: The effect of the heat exchanger network topology on the network control properties. Control Eng. Pract. 1(2), 375–380 (1993)

    Article  Google Scholar 

  54. Varga, E.I, Hangos, K.M., Szigeti, F.: Controllability and observability of heat exchanger networks in the time-varying parameter case. Control Eng. Pract. 3(10), 1409–1419 (1995)

    Google Scholar 

  55. Volkmann, L.: Estimations for the number of cycles in a graph. Period. Math. Hung. 33(2), 153–161 (1996)

    Google Scholar 

  56. Westphalen, D.L., Young, B.R., Svrcek, W.Y.: A controllability index for heat exchanger networks. Ind. Eng. Chem. Res. 42(20), 4659–4667 (2003)

    Google Scholar 

  57. Wood, R.M., Suaysompol, K., O’Neill, B.K., Roach, J.R., Trivedi, K.K.: A new option for heat exchanger network design. Chem. Eng. Prog. 87(9), 38–43 (1991)

    Google Scholar 

  58. Wood, R.M., Wilcox, R.J., Grossmann, I.E.: A note on the minimum number of units for heat exchanger network synthesis. Chem. Eng. Commun. 39(1-6), 371–380 (1985)

    Google Scholar 

  59. Yu, H., Fang, H., Yao, P., Yuan, Y.: A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration. Comput. Chem. Eng. 24(8), 2023–2035 (2000)

    Google Scholar 

  60. Zafiriou, E.: The Integration of Process Design and Control. Pergamon, UK (1994)

    Google Scholar 

  61. Zhelev, T.K., Varbanov, P.S., Seikova, I.: Hen’s operability analysis for better process integrated retrofit. Hung. J. Ind. Chem. 26(2), 81–88 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dániel Leitold .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leitold, D., Vathy-Fogarassy, Á., Abonyi, J. (2020). Application to the Analysis of Heat Exchanger Networks. In: Network-Based Analysis of Dynamical Systems. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-36472-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36472-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36471-7

  • Online ISBN: 978-3-030-36472-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics