Skip to main content

Preparation of Macro Encapsulated Phase Change Materials for High Temperature Energy Storage Applications

  • Conference paper
  • First Online:
Book cover TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 5739 Accesses

Abstract

Capsulated phase change materials (CPCM) is one of the most interesting and applicable high energy density solutions due to the store of thermal energy, though there has been little investigations for such systems at high temperature (Jamekhorshid et al. in Renew Sustain Energy Rev 31:531–542, 2014 [1], Qian et al. in Energy Convers Manag 98:34–45, 2015 [2]). The aim of this work is to create a CPCM with high durability for high temperature applications. The capsulation can be made by physical or chemical methods (Qian et al. in Powder Technol 282:37–42, 2015 [3]). Phase change materials (PCMs) are substances which melt and solidify at a constant temperature and are capable of storing and releasing large amounts of energy when undergoes phase change (Gimenez Gavarrell and Fereres, Renew Energy 107:497–507, 2017 [4]). NaNO 3 served as a phase change material (PCM) in this work for thermal energy storage, while diatomite acted as the carrier matrix to provide the structural strength and prevent the leakage of PCM. The fabrication process involved weighing the two particulate materials, followed by grinding them separately at the ambient temperature. The tableting was done resulting pellets were 15 mm in diameter and 5 mm thickness. After sintering , the pellet infrared camera was used to identify the temperature of the PCM in the period of time and the time of high temperature stabilization that can be used in high temperature applications such as solar concentrated panels (Deng et al. in J Mater Sci Technol 33(2):198–203, 2017 [5]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jamekhorshid A, Sadrameli S, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542

    Article  CAS  Google Scholar 

  2. Qian T et al (2015) Diatomite: a promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Convers Manag 98:34–45

    Article  CAS  Google Scholar 

  3. Qin Y et al (2015) Sodium sulfate-diatomite composite materials for high temperature thermal energy storage. Powder Technol 282:37–42

    Article  CAS  Google Scholar 

  4. Gimenez Gavarrell P, Fereres S (2017) Glass encapsulated phase change materials for high temperature thermal energy storage. Renew Energy 107:497–507

    Google Scholar 

  5. Deng Y et al (2017) Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage. J Mater Sci Technol 33(2):198–203

    Article  Google Scholar 

  6. Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 16(4):2118–2132

    Article  CAS  Google Scholar 

  7. KotzÊ JP, von BackstrÃļm TW, Erens PJ (2013) High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids. J Sol Energy Eng 135(3):035001

    Article  Google Scholar 

  8. Nomura T et al (2015) Microencapsulation of metal-based phase change material for high-temperature thermal energy storage. Sci Rep 5:9117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the research department of Tarbiat Modares University for the financial supports during the research (The research group on the application of PCM on energy management, Grant No. IG-39710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mojtaba Sadrameli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadrameli, S.M., Soleimanpour, S. (2020). Preparation of Macro Encapsulated Phase Change Materials for High Temperature Energy Storage Applications. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_60

Download citation

Publish with us

Policies and ethics