Skip to main content

Critical Quenching Rates After Solution Annealing: Peculiarities of Aluminum–Silicon Alloys Fabricated by Laser Powder-Bed Fusion

  • Conference paper
  • First Online:
  • 5798 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Hot isostatic pressing is commonly used to reduce the porosity of (sand-)cast age-hardenable Al-alloys in order to meet the high quality requirements defined by aircraft and automotive industries. In order to establish additive manufacturing methods, such as laser powder-bed fusion (L-PBF), hot isostatic pressing can be utilized to reduce the anisotropic mechanical properties in as-built condition and at the same time eliminate porosity. For the cast aluminum alloy A356, a gas pressure of 75 MPa during hot isostatic pressing lowers the critical cooling rate required to achieve an oversaturated solid solution to about 1 K/s, which is significantly lower than the required quenchingrate at atmospheric pressure (2–4 K/s). Thus, an oversaturated state of dissolved magnesium and silicon atoms within the aluminum matrix of cast alloys can easily be achieved in modern hot isostatic presses, thereby avoiding the necessity of a separate solution annealing step. In this work, we applied hot isostatic pressing followed by rapid quenching and direct aging to age-hardenable aluminum alloys processed by both sand casting and laser powder-bed fusion. It was shown that the proposed process of direct aging could be utilized for post-heat treatment of additively manufactured age-hardenable aluminum alloys to open up new fields of applications, for which components have to possess a high fatigue resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hitzler L, Hirsch J, Heine B, Merkel M, Hall W, Öchsner A (2017) On the anisotropic mechanical properties of selective laser melted stainless steel. Materials 10(10):1136

    Article  Google Scholar 

  2. Houria IM, Nadot Y, Fathallah R, Roy M, Maijer DM (2015) Influence of casting defect and SDAS on the multiaxial fatigue behaviour of A356–T6 alloy including mean stress effect. Int J Fatigue 80:90–102

    Article  Google Scholar 

  3. Ceschini L, Morri A, Toschi S, Seifeddine S (2016) Room and high temperature fatigue behaviour of the A354 and C355 (Al–Si–Cu–Mg) alloys: role of microstructure and heat treatment. Mater Sci Eng A 653:129–138

    Article  CAS  Google Scholar 

  4. Wang QG, Apelian D, Lados DA (2001) Fatigue behavior of A356-T6 aluminum cast alloys. Part I. effect of casting defects. J Light Met 1(1):73–84

    Google Scholar 

  5. Yi JZ, Gao YX, Lee PD, Lindley TC (2004) Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum-silicon alloy (A356–T6). Mater Sci Eng A 386(1–2):396–407

    Article  Google Scholar 

  6. Han S-W, Kumai S, Sato A (2002) Effects of solidification structure on short fatigue crack growth in Al–7%Si–0.4%Mg alloy castings. Mater Sci Eng A 332(1–2):56–63

    Google Scholar 

  7. Hitzler L, Janousch C, Schanz J, Merkel M, Mack F, Öchsner A (2016) Non-destructive evaluation of AlSi10Mg prismatic samples generated by selective laser melting: influence of manufacturing conditions. Materialwissenschaft und Werkstofftechnik 47(5–6):564–581

    Article  CAS  Google Scholar 

  8. Hitzler L, Merkel M, Hall W, Öchsner A (2018) A review of metal fabricated with laser- and powder-bed based additive manufacturing techniques: process, nomenclature, materials, achievable properties, and its utilization in the medical sector. Adv Eng Mater 20(5):1700658

    Article  Google Scholar 

  9. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater Sci Eng A 667:139–146

    Article  CAS  Google Scholar 

  10. Hitzler L, Hirsch J, Schanz J, Heine B, Merkel M, Hall W, Öchsner A (2019) Fracture toughness of selective laser melted AlSi10Mg. Proc Inst Mech Eng Part L J Mater Des Appl 233(4):615–621

    Article  CAS  Google Scholar 

  11. Kimura T, Nakamoto T (2016) Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des 89:1294–1301

    Google Scholar 

  12. Hafenstein S, Werner E, Wilzer J, Theisen W, Weber S, Sunderkötter C, Bachmann M (2015) Influence of temperature and tempering conditions on thermal conductivity of hot work tool steels for hot stamping applications. Steel Res Int 86(12):1628–1635

    Article  CAS  Google Scholar 

  13. Hafenstein S, Werner E, Wilzer J, Theisen W, Weber S, Sunderkötter C, Bachmann M (2017) Einfluss der Temperatur und des Vergütungszustands auf die Wärmeleitfähigkeit von Warmarbeitsstählen für das Presshärten. HTM J Heat Treat Mater 72(2):81–86

    Article  Google Scholar 

  14. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Progr Mater Sci

    Google Scholar 

  15. Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang Z, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A 590:153–160

    Article  CAS  Google Scholar 

  16. Hitzler L, Janousch C, Schanz J, Merkel M, Heine B, Mack F, Hall W, Öchsner A (2017) Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol 243:48–61

    Article  CAS  Google Scholar 

  17. Hitzler L, Charles A, Öchsner A (2016) The influence of post-heat-treatments on the tensile strength and surface hardness of selective laser melted AlSi10Mg. Defect Diff Forum 370:171–176

    Article  Google Scholar 

  18. Heilgeist S, Hitzler L, Javanbakht Z, Merkel M, Heine B, Öchsner A (2019) The influence of post-heat treatments on the tensile strength and surface hardness of selectively laser-melted AlSi10Mg. Materialwissenschaft und Werkstofftechnik 50(5):546–552

    Article  CAS  Google Scholar 

  19. Sert E, Schuch E, Hitzler L, Werner E, Öchsner A, Merkel M (2019) Tensile strength performance with determination of Poisson’s ratio of additively manufactured AlSi10Mg samples. Materialwissenschaft und Werkstofftechnik 50(5):539–545

    Article  CAS  Google Scholar 

  20. Hitzler L, Schoch N, Heine B, Merkel M, Hall W, Öchsner A (2018) Compressive behaviour of additively manufactured AlSi10Mg. Materialwissenschaft und Werkstofftechnik 49(5):683–688

    Article  CAS  Google Scholar 

  21. Graf W (2008) HIP und Wärmebehandlung von Aluminiumguss—Zwei Prozesse werden neu kombiniert. Zeitschrift für Werkstoffe, Wärmebehandlung, Fertigung 63(3):168–173

    CAS  Google Scholar 

  22. Tammas-Williams S, Withers PJ, Todd I, Prangnell PB (2016) Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scripta Mater 122:72–76

    Article  CAS  Google Scholar 

  23. Wang Z, Shi Y, Li R, Wei Q (2011) Manufacturing AISI316L components via selective laser melting coupled with hot isostatic pressing 675–677, pp 853–856

    Google Scholar 

  24. Lavery NP, Cherry J, Mehmood S, Davies H, Girling B, Sackett E, Brown SGR, Sienz J (2017) Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion. Mater Sci Eng A 693:186–213

    Article  CAS  Google Scholar 

  25. Jacobs MH (1972) The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy. Philos Mag 26(1):1–13

    Article  CAS  Google Scholar 

  26. Edwards GA, Stiller K, Dunlop GL, Couper MJ (1998) The precipitation sequence in Al–Mg–Si alloys. Acta Mater 46(11):3893–3904

    Article  CAS  Google Scholar 

  27. Dutta I, Allen SM (1991) A calorimetric study of precipitation in commercial aluminium alloy 6061. J Mater Sci Lett 10:323–326

    Article  CAS  Google Scholar 

  28. Andersen SJ, Zandbergen HW, Jansen C, Tundal U, Reiso O (1998) The crystal structure of the beta\(\prime \prime \) phase in Al–Mg–Si alloys. Acta Mater 46(9):3283–3298

    Article  CAS  Google Scholar 

  29. Hafenstein S, Brummer M, Ahlfors M, Werner E (2016) Combined hot isostatic pressing and heat treatment of aluminum A356 cast alloys. HTM J Heat Treat Mater 71(3):117–124

    Article  Google Scholar 

  30. Hafenstein S, Brummer M, Ahlfors M, Werner E (2016) Kombiniertes Heißisostatisches Pressen (HIP) und Wärmebehandlung von einer A356 Aluminiumgusslegierung. Giesserei Praxis 7–8:316–321

    Google Scholar 

  31. Hafenstein S, Werner E (2018) Simultaneous hot isostatic pressing and solution annealing of aluminum cast alloys followed by instantaneous aging at elevated temperatures. IOP Conf Ser Mater Sci Eng 416:012084

    Article  Google Scholar 

  32. Murali S, Arunkumar Y, Chetty PVJ, Raman KS, Murthy KSS (1997) The effect of preaging on the delayed aging of Al–7Si–0.3Mg. JOM 49(2):29–33

    Google Scholar 

  33. Carrera E, Alejandro GJ, Talamantes SJ, Colás R (2011) Effect of the delay in time between cooling and aging in heat-treated cast aluminum alloys. Metal Mater Trans B 42(5):1023–1030

    Article  CAS  Google Scholar 

  34. Zhen L, Kang SB (1997) The effect of pre-aging on microstructure and tensile properties of Al–Mg–Si alloys. Scripta Mater 36(10):1089–1094

    Article  CAS  Google Scholar 

  35. Ceschini L, Morri A, Morri A (2013) Effects of the delay between quenching and aging on hardness and tensile properties of A356 aluminum alloy. J Mater Eng Perf 22(1):200–205

    Article  CAS  Google Scholar 

  36. DIN EN 1706:2010, Aluminium und Aluminiumlegierungen—Gussstücke—Chemische Zusammensetzung und mechanische Eigenschaften; Deutsche Fassung (Dezember 2013)

    Google Scholar 

  37. Hafenstein S (2019) Heißisostatisches Pressen von Aluminiumgusslegierungen mit integrierter Wärmebehandlung, Springer Vieweg

    Google Scholar 

  38. DIN EN ISO 6506-2, Metallische Werkstoffe—Härteprüfung nach Brinell—Teil 2: Überprüfung und Kalibrierung der Prüfmaschinen (April 2016)

    Google Scholar 

  39. Schindelbacher G (1993) Einfluss unterschiedlicher Porosität auf die mechanischen Eigenschaften der Legierung GD-AlSi9Cu3. Giesserei Praxis 19:381–392

    Google Scholar 

  40. Skrinsky Y (2002) Einfluß von heiß- und kaltisostatischem Pressen auf die statischen mechanischen Werkstoffkennwerte von Gußteilen aus Aluminiumlegierungen. Dissertation, Otto-von-Guericke-Universität, Magdeburg

    Google Scholar 

  41. Zhang DL, Zheng L (1996) The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy. Metal Mater Trans A 27(12):3983–3991

    Google Scholar 

  42. Sjölander E, Seifeddine S, Fracasso F (2015) Influence of quench rate on the artificial ageing response of an Al–8Si–0.4Mg cast alloy. Mater Sci Forum, 219–225

    Google Scholar 

  43. Seifeddine S, Timelli G, Svensson IL (2007) On the influence of quenching rate on the microstructural and mechanical properties of aluminium cast alloys A356 and A354. Int Found Res/Giessereiforschung 59(1):1–10

    Google Scholar 

  44. Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, vol 155 of Springer series in solid-state sciences, Springer

    Google Scholar 

  45. Blank VD, Estrin EI (2014) Phase transitions in solids under high pressure. CRC Press

    Google Scholar 

  46. Rottstegge AK (2017) Strukturbildungsprozesse von Eisenbasislegierungen beim heißisostatischen Pressen. Dissertation, Ruhr-Universität Bochum, Bochum

    Google Scholar 

  47. Sundquist BE (1969) The effect of alloying elements and pressure on the growth of pearlite. Acta Metal 17(8):967–978

    Article  CAS  Google Scholar 

  48. Coates DE (1973) Diffusional growth limitation and hardenability. Metal Trans 4(10):2313–2325

    Article  CAS  Google Scholar 

  49. Bhadeshia H, Honeycombe RWK (2007) Steels: microstructure and properties, 3rd edn. Butterworth-Heinemann, Elsevier

    Google Scholar 

  50. Hafenstein S, Werner E (2019) Pressure dependence of age-hardenability of aluminum cast alloys and coarsening of precipitates during hot isostatic pressing. Mater Sci Eng A 757:62–69

    Article  CAS  Google Scholar 

  51. Dorward RC (1973) Preaging effects in Al–Mg–Si alloys. Metal Trans 4(2):507–512

    Article  CAS  Google Scholar 

  52. Sjölander E, Seifeddine S (2010) The heat treatment of Al–Si–Cu–Mg casting alloys. J Mater Process Technol 210(10):1249–1259

    Article  Google Scholar 

  53. Geuser FD, Lefebvre W, Blavette D (2006) 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Phil Mag Lett 86(4):227–234

    Article  Google Scholar 

  54. Murayama M, Hono K (1999) Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater 47(5):1537–1548

    Article  CAS  Google Scholar 

  55. Serizawa A, Hirosawa S, Sato T (2008) Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al–Mg–Si alloy. Metal Mater Trans A 39(2):243–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hitzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hafenstein, S., Hitzler, L., Sert, E., Öchsner, A., Merkel, M., Werner, E. (2020). Critical Quenching Rates After Solution Annealing: Peculiarities of Aluminum–Silicon Alloys Fabricated by Laser Powder-Bed Fusion. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_32

Download citation

Publish with us

Policies and ethics