Skip to main content

Printed Flexible Sensors Functionalized with TiO2 Nanowires for Room Temperature CO2 Gas Sensing

  • Conference paper
  • First Online:
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The monitoring of CO2 concentration is important for the environment and health. The present work reports a printed silver electrodes CO2 sensor with TiO2 nanowires coated on the surface. The silver electrode sensor was printed with a Voltera PCB printer. TiO2 nanowires were attached to the electrodes by an electro-deposition method. Variations in resistance of the sensing element by the exposure of CO2 gas were successfully observed at room temperature without additional heat. The printed CO2 sensor shows responses from 78 ppm to more than 1055 ppm with a response time of 92 s and a recovery time of 25 s. The selectivity experiment displays that the printed sensor does not respond to methane, CO, NH3, H2, or H2S at 1000 ppm or higher concentration, but it is slightly sensitive to humidity. The response is 2% for 1000 ppm CO2 , while the response is 0.7% when the relative humidity changes from 48 to 99%. The present results display a facile method to develop highly sensitive and selective CO2 sensors operating at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nieuwenhuizen M, Nederlof A (1990) A SAW gas sensor for carbon dioxide and water. Preliminary experiments. Sens Actuators B Chem 2(2):97–101

    Google Scholar 

  2. Joly L et al (2007) Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68 μm. Appl Phys B 86(4):743–748

    Google Scholar 

  3. Ong K, Grimes C (2001) A carbon nanotube-based sensor for CO2 monitoring. Sensors 1(6):193–205

    Article  CAS  Google Scholar 

  4. Marsal A, Cornet A, Morante J (2003) Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor. Sens Actuators B Chem 94(3):324–329

    Article  CAS  Google Scholar 

  5. Yadav B et al (2016) Fabrication and characterization of nanostructured indium tin oxide film and its application as humidity and gas sensors. J Mater Sci Mater Electron 27(5):4172–4179

    Article  CAS  Google Scholar 

  6. Huber J et al (2016) Photoacoustic CO2-sensor for automotive applications. Procedia Eng 168:3–6

    Article  CAS  Google Scholar 

  7. Sonker RK, Yadav B (2016) Low temperature study of nanostructured Fe2O3 thin films as NO2 sensor. Mater Today Proc 3(6):2315–2320

    Article  Google Scholar 

  8. Jeong Y-J, Balamurugan C, Lee D-W (2016) Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sens Actuators B Chem 229:288–296

    Article  CAS  Google Scholar 

  9. Yue J, Jiang X, Yu A (2013) Adsorption of the OH group on SnO2 (110) oxygen bridges: a molecular dynamics and density functional theory study. J Phys Chem C 117(19):9962–9969

    Article  CAS  Google Scholar 

  10. Hunge Y et al (2018) A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens Actuators B Chem 274:1–9

    Article  CAS  Google Scholar 

  11. Habib M et al (2015) Preparation and characterization of ZnO nanowires and their applications in CO2 gas sensors. Mater Today Proc 2(10):5714–5719

    Article  Google Scholar 

  12. Yang Q et al (2017) Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sens Actuators B Chem 241:806–813

    Article  CAS  Google Scholar 

  13. Dhawale D, Lokhande C (2011) Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance. J Alloy Compd 509(41):10092–10097

    Article  CAS  Google Scholar 

  14. Sumangala T et al (2018) Effect of synthesis method and morphology on the enhanced CO2 sensing properties of magnesium ferrite MgFe2O4. Ceram Int 44(15):18578–18584

    Article  Google Scholar 

  15. Kida T et al (2008) Planar NASICON-Based CO2 sensor using BiCuVOx/Perovskite–type oxide as a solid-reference electrode. J Electrochem Soc 155(5):J117–J121

    Article  CAS  Google Scholar 

  16. Shimizu Y, Yamashita N (2000) Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode. Sens Actuators B Chem 64(1–3):102–106

    Article  CAS  Google Scholar 

  17. Struzik M et al (2018) A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater 30(44):1804098

    Article  Google Scholar 

  18. Krishnakumar T et al (2011) CdO-based nanostructures as novel CO2 gas sensors. Nanotechnology 22(32):325501

    Article  CAS  Google Scholar 

  19. Xiang C et al (2014) A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram Int 40(10):16343–16348

    Article  CAS  Google Scholar 

  20. Sonker RK, Sabhajeet S, Yadav B (2016) TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J Mater Sci Mater Electron 27(11):11726–11732

    Article  CAS  Google Scholar 

  21. Hu A et al (2011) Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J Hazard Mater 189(1–2):278–285

    Article  CAS  Google Scholar 

  22. Hu A et al (2013) Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures. J Photochem Photobiol A 256:7–15

    Article  CAS  Google Scholar 

  23. Wu J et al. Electrophoretic deposition and thermo-chemical properties of Al/Fe2O3 nanothermite thick films

    Google Scholar 

  24. Sonker RK et al (2015) Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater Lett 152:189–191

    Article  CAS  Google Scholar 

  25. Kim DH et al (2000) CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide. Sens Actuators B Chem 62(1):61–66

    Article  CAS  Google Scholar 

  26. Herrán J, Mandayo GG, Castano E (2008) Solid state gas sensor for fast carbon dioxide detection. Sens Actuators B Chem 129(2):705–709

    Article  Google Scholar 

  27. Mandal B et al (2018) π-Conjugated amine–ZnO nanohybrids for the selective detection of CO2 gas at room temperature. ACS Appl Nano Mater 1(12):6912–6921

    Article  CAS  Google Scholar 

  28. Fan K et al (2013) CO2 gas sensors based on La1−xSrxFeO3 nanocrystalline powders. Sens Actuators B Chem 177:265–269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is supported by the funding from NASA-MSFC-UTK CAN Project (80MSFC19M003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Yu, Y., James, Z., Liu, Y., Hill, C., Hu, A. (2020). Printed Flexible Sensors Functionalized with TiO2 Nanowires for Room Temperature CO2 Gas Sensing. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_181

Download citation

Publish with us

Policies and ethics