Skip to main content

Thermodynamic and Kinetic Modelling of Molten Oxide Electrolysis Cells

  • Conference paper
  • First Online:
  • 5929 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Direct electrolytic extraction of molten iron from its oxide is an attractive alternative technology for reducing, or eliminating, greenhouse gas emissions associated with iron and steelmaking. While significant progress has been made to develop the process on the laboratory and industrial scales, there is no information on the anticipated performance of large-scale molten oxide electrolysis cells in the open literature. In this work, we present a detailed thermodynamic and kinetic model to describe large-scale molten oxide electrolysis cells. The model simultaneously considers the effect of different thermodynamic and kinetic parameters to predict energy requirements (kW h/tonne) and throughput (tonnes/day) of electrolysis cells. In instances where existing technical or engineering information is absent for molten oxide electrolysis cells, analogy was drawn to Hall-Héroult cells for aluminum electrolysis .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Steel Association (2019) Steel statistical yearbook. Belgium, Brussels

    Google Scholar 

  2. Carpenter A (2012) CO2 abatement in the iron and steel industry. IEA Clean Coal Centre, pp 67–70

    Google Scholar 

  3. International Energy Agency (2017) Energy technology perspectives 2017, Paris

    Google Scholar 

  4. Sadoway DR (1995) New opportunities for metal extraction and waste treatment by electrochemical processing in molten salts. J Mater Res 10(3):487–492

    Article  CAS  Google Scholar 

  5. Kim H, Paramore J, Allanore A, Sadoway DR (2011) Electrolysis of molten iron oxide with an iridium anode: the role of electrolyte basicity. J Electrochem Soc 158(10):E101–E105

    Article  CAS  Google Scholar 

  6. Wang D, Gmitter AJ, Sadoway DR (2011) Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc 158(6):E51–E54

    Article  CAS  Google Scholar 

  7. Allanore A (2017) Electrochemical engineering for commodity metals extraction. Interface 26(2):63–68

    CAS  Google Scholar 

  8. Judge WD, Allanore A, Sadoway DR, Azimi G (2017) E-logpO2 diagrams for ironmaking by molten oxide electrolysis. Electrochim Acta 247:1088–1094

    Article  CAS  Google Scholar 

  9. Judge WD, Azimi G (2018) Electrochemical behaviour of iron in molten oxides. ECS Trans 85(4):91–102

    Article  CAS  Google Scholar 

  10. Barati M, Coley KS (2006) Electrical and electronic conductivity of CaO-SiO2-FeOx slags at various oxygen potentials: part II. Mechanism and a model of electronic conduction. Metall Mater Trans B 37(1):51–60

    Google Scholar 

  11. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang Y, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende M (2016) Factsage thermochemical software and databases, 2010–2016. CALPHAD 54:35–53

    Article  CAS  Google Scholar 

  12. Allibert M, Gaye H, Geiseler J (1995) Slag atlas. Verlag Stahleisen GmbH, Dusseldorf, Germany

    Google Scholar 

  13. Lee SH, Min DJ (2017) Influence of basicity on anodic reaction in CaO-SiO2-Al2O3 melts. J Electrochem Soc 164(8):H5308–H5314

    Article  CAS  Google Scholar 

  14. Park J, Rhee PC (2001) Ionic properties of oxygen in slag. J Non Cryst Solids 282(1):7–14

    Article  CAS  Google Scholar 

  15. Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A (2001) Aluminum electrolysis: fundamentals of the Hall-Héroult process. Al-Verlag, Dusseldorf

    Google Scholar 

  16. Thonstad J, Rolseth S (1978) On the cathodic overvoltage on aluminium in NaF-AlF3-Al2O3 melts—II. Electrochim Acta 23(3):233–241

    Article  CAS  Google Scholar 

  17. Grjotheim K, Nai Xiang F, Kvandet H (1986) Current efficiency measurements in laboratory aluminium cells—IX. Cathodic overvoltage on aluminium-copper alloys. Can Metall Q 25(4):293–296

    Google Scholar 

  18. Keller R, Rolseth S, Thonstad J (1997) Mass transport considerations for the development of oxygen-evolving anodes in aluminum electrolysis. Electrochim Acta 42(12):1809–1817

    Article  CAS  Google Scholar 

  19. Jessen SW (2008) Mathematical modeling of a Hall Héroult aluminium reduction cell. Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  20. Allanore A, Yin L, Sadoway DR (2013) A new anode material for oxygen evolution in molten oxide electrolysis. Nature 497(7449):353–356

    Article  CAS  Google Scholar 

  21. Caldwell AH, Lai E, Gmitter AJ, Allanore A (2016) Influence of mass transfer and electrolyte composition on anodic oxygen evolution in molten oxides. Electrochim Acta 219:178–186

    Article  CAS  Google Scholar 

  22. Haupin WE (2016) Principles of aluminum electrolysis. In: Essential readings in light metals. Springer, Berlin, pp 3–11

    Google Scholar 

  23. Ghosh A, Chatterjee A (2015) Ironmaking and steelmaking: theory and practice. PHI Learning Private Limited, Delhi, India

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant number: 498382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Azimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Judge, W.D., Azimi, G. (2020). Thermodynamic and Kinetic Modelling of Molten Oxide Electrolysis Cells. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_177

Download citation

Publish with us

Policies and ethics