Skip to main content

Effective Copper Diffusion Coefficients in CuSO4–H2SO4 Electrowinning Electrolytes

  • Conference paper
  • First Online:
Book cover TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Mass transport is an important factor in the deposit quality of copper electrowinning . Presently, there is limited diffusivity data available at commercially relevant concentrations between 25 and 40 ℃. Linear sweep voltammetry at a rotating disk electrode was used to measure effective diffusion coefficients of cupric ion for a wide range of copper concentrations (10–50 g/L), sulfuric acid concentrations (120–240 g/L), and temperatures (25–60 ℃). The results were well correlated by the equation: D, m2/s = 2.977 × 10−10–5.462 × 10−13 [Cu]—1.212 × 10−12 [H2SO4] + 1.688 × 10−11 × T, where [Cu] and [H2SO4] are in g/L, and T is  ℃. Addition of 20 mg/L Cl slightly increased effective diffusivity. Other common commercial organic smoothing agents were found to have no effect. The measured diffusivities were used to calculate the “maximum permissible current density” that can produce smooth dense cathodes as a function of copper concentration and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The World Copper Factbook (2018). International Copper Study Group. http://www.icsg.org. Accessed 15 Aug 2019

  2. Al Shakarji R, He Y, Gregory S (2011) Statistical analysis of the effect of operating parameters on acid mist generation in copper electrowinning. Hydrometallurgy 106(1–2):113–118

    Article  Google Scholar 

  3. Hrussanova A, Mirkova L, Dobrev T, Vasilev S (2004) Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb–Co3O4, Pb–Ca–Sn, and Pb–Sb anodes for copper electrowinning: Part I. Hydrometallurgy 72(3–4):205–213

    Article  CAS  Google Scholar 

  4. Qin X, Gao F, Chen G (2010) Effects of the geometry and operating temperature on the stability of Ti/IrO2–SnO2–Sb2 O5 electrodes for O2 evolution. J Appl Electrochem 40(10):1797–1805

    Article  CAS  Google Scholar 

  5. Gang X, Qian Z (2014) The stability of copper extractants in acidic media. In: ALTA 2014 Nickel-Cobalt-Copper, Perth, Australia, 2014. ALTA Metallurgical Services, pp 281–291

    Google Scholar 

  6. Ibl N, Javet P, Stahel F (1972) Note on the electrodeposits obtained at the limiting current. Electrochim Acta 17(4):733–739

    Article  CAS  Google Scholar 

  7. Uceda D, O’Keefe T (1990) Electrochemical evaluation of copper deposition with gas sparging. J Appl Electrochem 20(2):327–334

    Article  CAS  Google Scholar 

  8. Ettel V, Tilak B, Gendron A (1974) Measurement of cathode mass transfer coefficients in electrowinning cells. J Electrochem Soc 12(7):867–872

    Article  Google Scholar 

  9. O’Keefe TJ, Cuzmar J, Chen S (1987) Calculation of mass transfer coefficients in metal deposition using electrochemical tracer techniques. J Electrochem Soc 134(3):547–551

    Article  Google Scholar 

  10. Ettel V, Gendron A, Tilak B (1975) Electrowinning copper at high current densities. Metall Mater Trans B 6(1):31–36

    Article  Google Scholar 

  11. Gendron A, Ettel V (1975) Hydrodynamic studies in natural and forced convection electrowinning cells. Can J Chem Eng 53(1):36–40

    Article  CAS  Google Scholar 

  12. Wang H, Chen S, O’Keefe T, Degrez M, Winand R (1989) Evaluation of mass transport in copper and zinc electrodeposition using tracer methods. J Appl Electrochem 19(2):174–182

    Article  CAS  Google Scholar 

  13. Degrez M, Winand R (1984) Determination des parametres cinetiques de l’electrodeposition du cuivre a haute densite de courant. Cas des solutions sulfuriques sans inhibiteur. Electrochimica Acta 29(3):365–372

    Google Scholar 

  14. Ilgar E, O’Keefe T (1997) Surface roughening of electrowon copper in the presence of chloride ions. In: Aqueous Electrotechnologies: Progress in Theory and Practice, pp 51–62

    Google Scholar 

  15. Nicol M, Zhang S, Kwang Loon Ang A, Fiorucci A (2013) Mass transport to cathodes in the electrowinning of copper. In: Paper presented at Copper, 2013, 8–10 April 2013

    Google Scholar 

  16. Hotloś J, Jaskula M (1988) Diffusion coefficients of silver ions in CuSO4 + H2SO4 solutions. J Electroanal Chem Interfacial Electrochem 249(1–2):123–132

    Article  Google Scholar 

  17. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  18. Newman J (1966) Schmidt number correction for the rotating disk. J Phys Chem 70(4):1327–1328

    Article  CAS  Google Scholar 

  19. Hinatsu JT, Foulkes FR (1989) Diffusion coefficients for copper (II) in aqueous cupric sulfate-sulfuric acid solutions. J Electrochem Soc 136(1):125–132

    Article  CAS  Google Scholar 

  20. Quickenden T, Jiang X (1984) The diffusion coefficient of copper sulphate in aqueous solution. Electrochim Acta 29(6):693–700

    Article  CAS  Google Scholar 

  21. Moats MS, Hiskey JB, Collins DW (2000) The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy 56(3):255–268

    Article  CAS  Google Scholar 

  22. Kalliomäki T, Wilson BP, Aromaa J, Lundström M (2019) Diffusion coefficient of cupric ion in a copper electrorefining electrolyte containing nickel and arsenic. Miner Eng 134:381–389

    Article  Google Scholar 

  23. Gladysz O, Los P, Krzyzak E (2007) Influence of concentrations of copper, levelling agents and temperature on the diffusion coefficient of cupric ions in industrial electro-refining electrolytes. J Appl Electrochem 37(10):1093–1097

    Article  CAS  Google Scholar 

  24. Price DC, Davenport WG (1981) Physico-chemical properties of copper electrorefining and electrowinning electrolytes. Metall Trans B 12(4):639–643

    Article  Google Scholar 

  25. Araneda-Hernández E, Vergara-Gutierrez F, Pagliero-Neira A (2014) Effect of additives on diffusion coefficient for cupric ions and kinematics viscosity in CuSO4–H2SO4 solution at 60 C. Dyna 81(188):209–215

    Article  Google Scholar 

  26. Vanysek P (2000) Ionic conductivity and diffusion at infinite dilution. CRC Handb Chem Phys 83:76–78

    Google Scholar 

  27. Moats MS (2018) Energy efficiency of electrowinning. In: Energy efficiency in the minerals industry. Springer, pp 213–232

    Google Scholar 

  28. Popov K, Maksimović M, Djokić S (1981) Fundamental aspects of pulsating current metal electrodeposition III: Maximum practical deposition rate. Surface Technol 14(4):323–333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Moats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, J., Moats, M. (2020). Effective Copper Diffusion Coefficients in CuSO4–H2SO4 Electrowinning Electrolytes. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_114

Download citation

Publish with us

Policies and ethics