Skip to main content

Nanomaterials in Nutraceuticals Applications

  • Chapter
  • First Online:
Integrative Nanomedicine for New Therapies

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Diverse strategies are adopted to fight against various diseases and probable health risks. Besides the pharmaceutical approach, diet-based strategies are also deemed apt to avert various disorders. “Nutraceuticals” considered as bioactive components found in natural products. Bioactive components are additional nutritional ingredients that typically present in small quantities of foods that are used in day-to-day life and strongly believed to play a crucial role in the maintenance of our health. The food products used as nutraceuticals can be categorized as dietary fiber, prebiotics, probiotics, polyunsaturated fatty acids, antioxidants and other different types of herbal/natural foods. These nutraceuticals facilitate in combating a number of the major health problems including microbial infections. In recent years, nanotechnology-based formulations like micro- and nanoencapsulation have been a rising interest for nutraceutical, food and pharmaceutical applications. To enhance nutritional quality and stability of the nutraceuticals, one option is to encapsulate the functional ingredients using food-grade or “generally recognized as safe” (GRAS) materials that can exhibit controlled-release behavior. These diversity of building blocks and formulation methods led to nanocarriers like nanoemulsion, nanodispersion, nanoparticles, liposomes etc. with diverse physicochemical properties and functional characteristics. Based on the above-mentioned facts, this chapter provides an insight of some of the emerging nanomaterial-based applications being commercialized in nutraceuticals. A glimpse on various research work undertaken for the nanomaterials in the field of nutraceuticals is also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboalnaja, K. O., Yaghmoor, S., Kumosani, T. A., & McClements, D. J. (2016). Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems. Expert opinion on drug delivery, 13(9), 1327–1336.

    Article  CAS  Google Scholar 

  • Aditya, N. P., Chimote, G., Gunalan, K., Banerjee, R., Patankar, S., & Madhusudhan, B. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Experimental Parasitology, 131(3), 292–299.

    Article  CAS  Google Scholar 

  • Akhlaghi, S. P., Berry, R. M., & Tam, K. C. (2015). Modified cellulose nanocrystal for vitamin C delivery. An Official Journal of the American Association of Pharmaceutical Scientists, 16(2), 306–314.

    CAS  Google Scholar 

  • Alaarg, A., Jordan, N. Y., Verhoef, J. J., Metselaar, J. M., Storm, G., & Kok, R. J. (2016). Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: An in vitro assessment. International Journal of Nanomedicine, 11, 5027.

    Article  CAS  Google Scholar 

  • Alexander, M., Lopez, A. A., Fang, Y., & Corredig, M. (2012). Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. LWT-Food Science and Technology, 47(2), 427–436.

    Article  CAS  Google Scholar 

  • Annunziata, G., Tenore, G. C., & Novellino, E. (2018). Resveratrol-based nutraceuticals for the management of diabetes and obesity: Real therapeutic potential or a mere palliative. Archives of Diabetes & Obesity, 1–2.

    Google Scholar 

  • Aparna, C., Prathima, S., & Patnaik, R. (2015). Enhanced transdermal permeability of telmisartan by a novel nanoemulsion gel. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 335–342.

    CAS  Google Scholar 

  • Augustin, M. A., & Hemar, Y. (2009). Nano-and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews, 38(4), 902–912.

    Article  CAS  Google Scholar 

  • Bochicchio, S., Barba, A. A., Grassi, G., & Lamberti, G. (2016). Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. LWT-Food Science and Technology, 69, 9–16.

    Article  CAS  Google Scholar 

  • Caccamo, D., Curro, M., Ferlazzo, N., Condello, S., & Ientile, R. (2012). Monitoring of transglutaminase2 under different oxidative stress conditions. Amino Acids, 42, 1037–1043.

    Article  CAS  Google Scholar 

  • Calani, L., Brighenti, F., Bruni, R., & Del Rio, D. (2012). Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine, 20(1), 40–46.

    Article  CAS  Google Scholar 

  • Campos, D. A., Madureira, A. R., Gomes, A. M., Sarmento, B., & Pintado, M. M. (2014). Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids and Surfaces B: Biointerfaces, 115, 109–117.

    Article  CAS  Google Scholar 

  • Cencic, A., & Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2(6), 611–625.

    Article  CAS  Google Scholar 

  • Chakraborty, A., & Dhar, P. (2017). A review on potential of proteins as an excipient for developing a nano-carrier delivery system. Critical Reviews in Therapeutic Drug Carrier Systems, 34(5), 453–488.

    Google Scholar 

  • Choudhary, M., & Tomer, V. (2013). Cardioprotective effect of nutraceuticals—The emerging evidences. Proceedings of the Indian National Science Academy, 79(4), 985–996.

    CAS  Google Scholar 

  • Criado, P., Fraschini, C., Salmieri, S., Becher, D., Safrany, A., & Lacroix, M. (2016). Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films. Radiation Physics and Chemistry, 118, 61–69.

    Article  CAS  Google Scholar 

  • da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21(6), 284–292.

    Article  CAS  Google Scholar 

  • Davi, G., Santilli, F., & Patrono, C. (2010). Nutraceuticals in diabetes and metabolic syndrome. Cardiovascular Therapeutics, 28(4), 216–226.

    Article  CAS  Google Scholar 

  • De Felice, S. L. (1995). The nutraceutical revolution: Its impact on food industry R&D. Trends in Food Science & Technology, 6(2), 59–61.

    Article  CAS  Google Scholar 

  • Dissanayake, M., & Vasiljevic, T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. Journal of Dairy Science, 92, 1387–1397.

    Article  CAS  Google Scholar 

  • Doktorovova, S., Souto, E. B., & Silva, A. M. (2014). Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—A systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics, 87(1), 1–18.

    Article  CAS  Google Scholar 

  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363, 1–24.

    Article  CAS  Google Scholar 

  • Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26.

    Article  CAS  Google Scholar 

  • El-Leithy, E. S., Makky, A. M., Khattab, A. M., & Hussein, D. G. (2018). Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency. Drug Development and Industrial Pharmacy, 44(2), 316–328.

    Article  CAS  Google Scholar 

  • Frede, K., Henze, A., Khalil, M., Baldermann, S., Schweigert, F. J., & Rawel, H. (2014). Stability and cellular uptake of lutein-loaded emulsions. Journal of Functional Foods, 8, 118–127.

    Article  CAS  Google Scholar 

  • Gao, Z., Spilk, S., Momen, A., Muller, M. D., Leuenberger, U. A., & Sinoway, L. I. (2012). Vitamin C prevents hyperoxia-mediated coronary vasoconstriction and impairment of myocardial function in healthy subjects. European Journal of Applied Physiology, 112, 483–492.

    Article  CAS  Google Scholar 

  • Ghosh, A., Mandal, A. K., Sarkar, S., & Das, N. (2011). Hepatoprotective and neuroprotective activity of liposomal quercetin in combating chronic arsenic induced oxidative damage in liver and brain of rats. Drug Delivery, 18, 451–459.

    Article  CAS  Google Scholar 

  • Gopi, S., Amalraj, A., Haponiuk, J. T., & Thomas, S. (2016). Introduction of nanotechnology in herbal drugs and nutraceutical: A review. Journal of Nanomedicine and Biotherapeutic Discovery, 6, 143.

    Article  Google Scholar 

  • Gosal, W. S., Clark, A. H., & Ross-Murphy, S. B. (2004). Fibrillar β-lactoglobulin gels: Part 1. Fibril Formation and Structure. Biomacromolecules, 5, 2408–2419.

    Article  CAS  Google Scholar 

  • Grishkewich, N., Mohammed, N., Tang, J., & Tam, K. C. (2017). Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid & Interface Science, 29, 32–45.

    Article  CAS  Google Scholar 

  • Gunasekaran, S., Xiao, L., & OuldEleya, M. M. (2006). Whey protein concentrate hydrogels as bioactive carriers. Journal of Applied Polymer Science, 99, 2470–2476.

    Article  CAS  Google Scholar 

  • Huq, T., Fraschini, C., Khan, A., Riedl, B., Bouchard, J., & Lacroix, M. (2017). Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydrate Polymers, 168, 61–69.

    Article  CAS  Google Scholar 

  • Huq, T., Vu, K. D., Riedl, B., Bouchard, J., Han, J., & Lacroix, M. (2016). Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients. Cellulose, 23(3), 1967–1978.

    Article  CAS  Google Scholar 

  • Ipsen, R., & Otte, J. (2007). Self-assembly of partially hydrolysed alpha-lactalbumin. Biotechnology Advances, 25, 602–605.

    Article  CAS  Google Scholar 

  • Javed, S., Kohli, K., & Ali, M. (2011). Reassessing bioavailability of silymarin. Alternative Medicine Review, 16(3), 239.

    Google Scholar 

  • Kanoujia, J., Singh, M., Singh, P., & Saraf, S. A. (2016). Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Materials Science and Engineering C: Materials for Biological Applications, 69, 967–976.

    Article  CAS  Google Scholar 

  • Khan, A., Wen, Y., Huq, T., & Ni, Y. (2017). Cellulosic nanomaterials in food and nutraceutical applications: A review. Journal of Agriculture and Food Chemistry, 66(1), 8–19.

    Article  CAS  Google Scholar 

  • Klyachko, N. L., Manickam, D. S., Brynskikh, A. M., Uglanova, S. V., Li, S., Higginbotham, S. M., et al. (2012). Crosslinked antioxidant nanozymes for improved delivery to CNS. Nanomedicine, 8, 119–129.

    Article  CAS  Google Scholar 

  • Lee, D. M., Jackson, K. W., Knowlton, N., Wages, J., Alaupovic, P., Samuelsson, O., et al. (2011). Oxidative stress and inflammation in renal patients and healthy subjects. PLoS ONE, 6, e22360.

    Article  CAS  Google Scholar 

  • Li, B., Du, W., Jin, J., & Du, Q. (2012a). Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Journal of Agricultural and Food Chemistry, 60, 3477–3484.

    Article  CAS  Google Scholar 

  • Li, N., Han, Z., Li, L., Zhang, B., Liu, Z., & Li, J. (2018). The anti-cataract molecular mechanism study in selenium cataract rats for baicalin ophthalmic nanoparticles. Drug Design, Development and Therapy, 12, 1399.

    Article  CAS  Google Scholar 

  • Li, Y., Xiao, H., & McClements, D. J. (2012b). Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: Factors affecting polymethoxyflavone solubility. Food Biophysics, 7(4), 341–353.

    Article  Google Scholar 

  • Lin, N., Huang, J., & Dufresne, A. (2012). Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale, 4(11), 3274.

    Article  CAS  Google Scholar 

  • McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330.

    Article  CAS  Google Scholar 

  • Mehrad, B., Ravanfar, R., Licker, J., Regenstein, J. M., & Abbaspourrad, A. (2018). Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Research International, 105, 962–969.

    Article  CAS  Google Scholar 

  • Mohammadi, M., Pezeshki, A., Mesgari Abbasi, M., Ghanbarzadeh, B., & Hamishehkar, H. (2017). Vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Advanced Pharmaceutical Bulletin, 7(1), 61–71.

    Article  CAS  Google Scholar 

  • Mozafari, M. R. (2005). Liposomes: An overview of manufacturing techniques. Cellular & Molecular Biology Letters, 10(4), 711–719.

    CAS  Google Scholar 

  • Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349.

    Article  CAS  Google Scholar 

  • Muller, R. H., & Keck, C. M. (2004). Challenges and solutions for the delivery of biotech drugs—A review of drug nanocrystal technology and lipid nanoparticles. Journal of Biotechnology, 113, 151–170.

    Article  CAS  Google Scholar 

  • Muller, R. H., Radtke, M., & Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, S131–S155.

    Article  CAS  Google Scholar 

  • Nacka, F., Cansell, M., Meleard, P., & Combe, N. (2001). Incorporation of alpha-tocopherol in marine lipid-based liposomes: In vitro and in vivo studies. Lipids, 36, 1313–1320.

    Article  CAS  Google Scholar 

  • Najafian, L., & Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33, 178–185.

    Article  CAS  Google Scholar 

  • Nicolai, T., & Durand, D. (2013). Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science, 18, 249–256.

    Article  CAS  Google Scholar 

  • Niki, E. (2014). Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radical Biology and Medicine, 66, 3–12.

    Article  CAS  Google Scholar 

  • Pandey, M., Verma, R. K., & Saraf, S. A. (2010). Nutraceuticals: New era of medicine and health. Asian Journal of Pharmaceutical and Clinical Research, 3(1), 11–15.

    Google Scholar 

  • Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95–105.

    Article  CAS  Google Scholar 

  • Ramezanzade, L., Hosseini, S. F., & Nikkhah, M. (2017). Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry, 234, 220–229.

    Article  CAS  Google Scholar 

  • Rashidinejad, A., Birch, E. J., Sun-Waterhouse, D., & Everett, D. W. (2014). Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chemistry, 156, 176–183.

    Article  CAS  Google Scholar 

  • Relkin, P., & Shukat, R. (2012). Food protein aggregates as vitamin-matrix carriers: Impact of processing conditions. Food Chemistry, 134, 2141–2148.

    Article  CAS  Google Scholar 

  • Riemann, A., Schneider, B., Ihling, A., Nowak, M., Sauvant, C., Thews, O., & Gekle, M. (2011). Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS ONE, 6, e22445

    Google Scholar 

  • Sadeghi, R., Kalbasi, A., Emam-jomeh, Z., Razavi, S. H., Kokini, J., & Moosavi-Movahedi, A. A. (2013). Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. Journal of Nanoparticle Research, 15, 1–11.

    Article  CAS  Google Scholar 

  • Severino, P., Andreani, T., Macedo, A. S., FangueiroJF, Santana M. H. A., Silva, A. M., & Souto, E. B. (2012). Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. Journal of Drug Delivery, 12, 1–10.

    Article  CAS  Google Scholar 

  • Shah, A. V., Desai, H. H., Thool, P., Dalrymple, D., & Serajuddin, A. T. (2018). Development of self-microemulsifying drug delivery system for oral delivery of poorly water-soluble nutraceuticals. Drug Development and Industrial Pharmacy, 44(6), 895–901.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Li, Q. (2014). Biologically active peptides from foods. Applied Food Protein Chemistry, 75–98.

    Google Scholar 

  • Shinde, N., Bangar, B., Deshmukh, S., & Kumbhar, P. (2014). Nutraceuticals: A review on current status. Research Journal of Pharmacy and Technology, 7(1), 1–5.

    Google Scholar 

  • Shoji, Y., & Nakashima, H. (2004). Nutraceutics and delivery systems. Journal of Drug Targeting, 12, 385–391.

    Article  CAS  Google Scholar 

  • Shpigelman, A., Cohen, Y., & Livney, Y. D. (2012). Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids, 29, 57–67.

    Article  CAS  Google Scholar 

  • Singh, M., Kanoujia, J., Parashar, P., Arya, M., Tripathi, C. B., Sinha, V. R., et al. (2018). Augmented bioavailability of felodipine through an α-linolenic acid-based microemulsion. Drug Delivery and Translational Research, 8(1), 204–225.

    Article  CAS  Google Scholar 

  • Singh, M., Kanoujia, J., Singh, P., Tripathi, C. B., Arya, M., Parashar, P., et al. (2016a). Development of an α-linolenic acid containing soft nanocarrier for oral delivery: In vitro and in vivo evaluation. RSC Advances, 81, 77590–77602.

    Article  CAS  Google Scholar 

  • Singh, P., Singh, M., Kanoujia, J., Arya, M., Saraf, S. K., & Saraf, S. A. (2016b). Process optimization and photostability of silymarin nanostructured lipid carriers: Effect on UV-irradiated rat skin and SK-MEL 2 cell line. Drug Delivery and Translational Research, 6(5), 597–609.

    Article  CAS  Google Scholar 

  • Sinha, V. R., & Kumria, R. (2001). Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics, 224, 19–38.

    Article  CAS  Google Scholar 

  • Sivakumar, M., Tang, S. Y., & Tan, K. W. (2014). Cavitation technology—A greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochemistry, 21, 2069–2083.

    Google Scholar 

  • Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nanoemulsions. Current Opinion in Colloid & Interface Science, 10(3–4), 102–110.

    Article  CAS  Google Scholar 

  • Souyoul, S. A., Saussy, K. P., & Lupo, M. P. (2018). Nutraceuticals: A review. Dermatologic Therapy, 1–12.

    Google Scholar 

  • Spernath, A., & Aserin, A. (2006). Microemulsions as carriers for drugs and nutraceuticals. Advances in Colloid and Interface Science, 128, 47–64.

    Google Scholar 

  • Takahashi, M., Uechi, S., Takara, K., Asikin, Y., & Wada, K. (2009). Evaluation of an oral carrier system in rats: Bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of Agriculture and Food Chemistry, 57, 9141–9146.

    Article  CAS  Google Scholar 

  • Takechi, R., Pallebage-Gamarallage, M. M., Lam, V., Giles, C., & Mamo, J. C. (2013). Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice. Journal of Neuroinflammation, 10(1), 842.

    Article  CAS  Google Scholar 

  • Tan, C., Xue, J., Lou, X., Abbas, S., Guan, Y., Feng, B., et al. (2014). Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release. Food Function, 5(6), 1232–1240.

    Article  CAS  Google Scholar 

  • Tasset, I., Pontes, A. J., Hinojosa, A. J., de la Torre, R., & Tunez, I. (2011). Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington’s disease-like rat model. Nutritional Neuroscience, 14, 106–111.

    Google Scholar 

  • Tian, Y. Y., Ge, L., Duan, X. L., Gao, Z. Q., & Chang, Y. Z. (2007). Lycopene liposomes: Lycopene release in vitro and pharmaceutical behaviors and antioxidation in vivo. Yao Xue Xue Bao, 42, 1107–1111.

    CAS  Google Scholar 

  • Ting, Y. W., Jiang, Y., Ho, C. T., & Huang, Q. R. (2014). Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. Journal of Functional Foods, 7, 112–128.

    Article  CAS  Google Scholar 

  • Tripathi, C. B., Parashar, P., Arya, M., Singh, M., Kanoujia, J., Kaithwas, G., et al. (2018). QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: In vitro and in vivo evaluation. Drug Delivery and Translational Research, 10, 1–22.

    CAS  Google Scholar 

  • Ullah, H., Wahid, F., Santos, H. A., & Khan, T. (2016). Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 150, 330–352.

    Article  CAS  Google Scholar 

  • Vakilinezhad, M. A., Tanha, S., Montaseri, H., Dinarvand, R., Azadi, A., & Javar, H. A. (2018). Application of response surface method for preparation, optimization, and characterization of nicotinamide loaded solid lipid nanoparticles. Advanced Pharmaceutical Bulletin, 8(2), 245.

    Article  CAS  Google Scholar 

  • Wagoner, J., Morishima, C., Graf, T. N., Oberlies, N. H., Teissier, E., Pecheur, E. I., et al. (2011). Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS ONE, 6, e16464.

    Article  CAS  Google Scholar 

  • Wang, D., Zhao, P., Cuia, F., & Li, X. (2007). Preparation and characterization of solid lipid nanoparticles loaded with total flavones of Hippophae rhamnoides (TFH). PDA Journal of Pharmaceutical Science and Technology, 61, 110–120.

    CAS  Google Scholar 

  • Wang, Y., Xu, H., Fu, Q., Ma, R., & Xiang, J. (2011). Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. Journal of the Neurological Sciences, 304, 29–34.

    Article  CAS  Google Scholar 

  • Weber, S., Zimmer, A., & Pardeike, J. (2014). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 86, 7–22.

    Article  CAS  Google Scholar 

  • Xianquan, S., Shi, J., Kakuda, Y., & Yueming, J. (2005). Stability of lycopene during food processing and storage. Journal of Medicinal Food, 8(4), 413–422.

    Article  CAS  Google Scholar 

  • Yi, J., Liu, Y., Zhang, Y., & Gao, L. (2018). Fabrication of resveratrol-loaded whey protein-dextran colloidal complex for the stabilization and delivery of β-carotene emulsions. Journal of Agriculture and Food Chemistry, 66(36), 9481–9489.

    Article  CAS  Google Scholar 

  • Yu, H., & Huang, Q. (2012). Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of Agriculture and Food Chemistry, 60(21), 5373–5379.

    Article  CAS  Google Scholar 

  • Zheng, Y., Monty, J., & Linhardt, R. J. (2015). Polysaccharide-based nanocomposites and their applications. Carbohydrate Research, 405, 23–32.

    Article  CAS  Google Scholar 

  • Zimet, P., & Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids, 23, 1120–1126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (BC) wish to thank Prof. Abdul Muttaleb Yousef Jaber, Dr. Yazan Al-Bataineh (The Dean), Prof. Mutaz Sheikh Salem (The President) and Prof. Marwan Kamal (University Counsellor) of Philadelphia University, Amman, Jordan for the constant support, motivation and research funding (No. 467/34/100 PU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balakumar Chandrasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M., Singh, N., Chandrasekaran, B., Deb, P.K. (2020). Nanomaterials in Nutraceuticals Applications. In: Krishnan, A., Chuturgoon, A. (eds) Integrative Nanomedicine for New Therapies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-36260-7_14

Download citation

Publish with us

Policies and ethics