Skip to main content

Basic Techniques to Investigate the Nanostructured Materials

  • Chapter
  • First Online:
  • 591 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter is to deliver the basic methods for the characterizations of nanostructured materials. There are different shapes of materials existing in the nanomaterials such as particles, sheets, roads, dots, balls and films. The crystalline structures and surface morphology of nanomaterials are clearly calibrated using advanced techniques such as X-ray diffraction, Field emission scanning electron microscopy and transmission electron microscopy. The chemical compositions and purity of materials are examined by Energy dispersive X-ray analysis, Fourier transform infrared analysis and X-ray photoelectron spectroscopy. The biological studies of nanomaterials are examined using bioactivity, anti-microbial activity and bio degradability. This review gives a comprehensive understanding of the physico-chemical and biological nature of the nanomaterials.

Navaneethan Duraisamy and Kavitha Kandiah are equally contributed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4, 5731–5736.

    Article  CAS  Google Scholar 

  • Al–Sagheer, F. A., & Merchant, S. (2011). Visco–elastic properties of chitosan–titania nano–composites. Carbohydrate Polymers, 85, 356–362.

    Article  Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. Journal of the American Ceramic Society, 73, 373–380.

    CAS  Google Scholar 

  • Chen, Y. L., Lee, H. P., Chan, H. Y., Sung, L. Y., Chen, H. C., & Hu, Y. C. (2007). Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials, 28, 2294–2305.

    Article  CAS  Google Scholar 

  • Choi, H. C., Ahn, H. J., Jung, Y. M., Lee, M. K., Shin, H. J., Kim, S. B., et al. (2004). Characterization of the structures of size-selected TiO2 nanoparticles using X-ray absorption spectroscopy. Applied Spectroscopy, 58, 598–602.

    Article  CAS  Google Scholar 

  • Duraisamy, N., Hong, S. J., & Choi, K. H. (2013). Deposition and characterization of silver nanowires embedded, PEDOT: PSS thin films via electrohydrodynamic atomization. Chemical Engineering Journal, 225, 887–894.

    Article  CAS  Google Scholar 

  • Duraisamy, N., Kandiah, K., Rajendran, R., Prabhu, S., Ramesh, R., & Dhanaraj, G. (2018). Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Research on Chemical Intermediates, 44, 5653–5667.

    Article  CAS  Google Scholar 

  • Kavitha, K., Chunyan, W., Navaneethan, D., Rajendran, V., Valiyaveettil, S., & Vinoth, A. (2013a). In vitro gene expression and preliminary in vivo studies of temperature-dependent titania–graphene composite for bone replacement applications. RSC Advances, 210, 43951–43961.

    Google Scholar 

  • Kavitha, K., Prabhu, K., Rajendran, M., Manivasankan, V., Prabu, P., & Jayakumar, T. (2013b). Optimization of nano–titania and titania–chitosan nanocomposite to enhance biocompatibility. Current Nanoscience, 3, 308–317.

    Article  Google Scholar 

  • Kavitha, K., Prabhu, M., Selvam, M., & Rajendran, V. (2013c). TiO2–graphene nanocomposites for enhanced osteocalcin induction. Materials Science and Engineering C, 48, 252–262.

    Google Scholar 

  • Kavitha, K., Sutha, S., Prabhu, M., Rajendran, V., & Jayakumar, T. (2013d). In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydrate Polymers, 93, 731–739.

    Article  CAS  Google Scholar 

  • Kirk, S. E., Skepper, J. N., & Donald, A. M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. Journal of Microscopy, 233, 205–224.

    Article  CAS  Google Scholar 

  • Krishnamoorthy, K., Kim, G. S., & Kim, S. J. (2013). Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrasonics Sonochemistry, 20, 644–649.

    Article  CAS  Google Scholar 

  • Manivasakan, P., & Rajendran, V. (2011). Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon. Journal of the American Ceramic Society, 94, 410–1420.

    Article  Google Scholar 

  • Manivasakan, P., Rajendran, V., Rauta, P. R., Sahu, B. B., Sahu, P., Panda, B. K., et al. (2010). Effect of TiO2 nanoparticles on properties of silica refractory. Journal of the American Ceramic Society, 93, 2236–2243.

    Article  CAS  Google Scholar 

  • Murty, B. S., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2012). Tools to characterize Nanomaterials. In: Texbook of nanoscience and nanotechnology (pp. 149–175). Springer. ISBN 978-3-642-28030-6.

    Google Scholar 

  • Nakayama, N., & Hayashi, T. (2007). Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability, 92, 1255–1264.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Kavitha, K., Prabhu, M., Meenakshisundaram, N., & Rajendran, V. (2013). Nanohydroxyapatite–chitosan–gelatin polyelectrolyte complex with enhanced mechanical and bioactivity. Materials Science and Engineering C, 33, 3237–3244.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Meenakshi Sundaram, N., & Rajendran, V. (2011). Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature. Digest Journal of Nanomaterials and Biostructures, 6(1), 169–179.

    Google Scholar 

  • Selvam, M., Sakthipandi, K., Suriyaprabha, R., Saminathan, K., & Rajendran, V. (2013). Synthesis and characterisation of electrochemically–reduced graphene. Bulletin of Material Science, 36, 1315–1321.

    Article  CAS  Google Scholar 

  • Vallet-Regi, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2, 97–108.

    Article  Google Scholar 

  • VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., & Meyers, G. F. (2001). Nanoindentation of polymers: An overview. Macromolecular Symposium, 167, 15–43.

    Article  CAS  Google Scholar 

  • Wu, J. B., Lin, M. L., Cong, X., Liu, H. N., & Tan, P. H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47, 1822–1873.

    Article  CAS  Google Scholar 

  • Xu, Q., Fan, H., Guo, Y., & Cao, Y. (2006). Preparation of titania/silica mesoporous composite with activated carbon template in supercritical carbon doixide. Material Science and Engineering A, 435, 158–162.

    Article  Google Scholar 

  • Yin, H. Y., Wada, Kitamura, T., Kambe, S., Murasawa, S., Mori, H., et al. (2001). Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 11, 1694–1703.

    Article  CAS  Google Scholar 

  • Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234, 166–174.

    Article  CAS  Google Scholar 

  • Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80, 394–400.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Li, H. P., Cui, X. L., & Lin, Y. (2010). Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 20, 2801–2806.

    Article  CAS  Google Scholar 

  • Zhang, X., Sun, Y., Cui, X., & Jiang, Z. (2012). A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 37, 811–815.

    Article  CAS  Google Scholar 

  • Zhao, L., Chang, J., & Zhai, W. (2009). Preparation and HL-7702 cell functionality of titania/chitosan composite scaffolds’. Journal of Materials Science Materials in Medicine, 20, 949–957.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Dr. Navaneethan Duraisamy acknowledges the financial support provided by DST INSPIRE Faculty scheme (DST/INSPIRE/04/2018/001444), New Delhi. Dr. K. Kavitha acknowledges the financial support provided by Dr. D.S. Kothari Postdoctoral Fellowship (Ref. no: No. F.4–2/2006 (BSR)/BL/15–16/0225, UGC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balagurunathan Ramasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duraisamy, N., Kandiah, K., Ramasamy, B. (2020). Basic Techniques to Investigate the Nanostructured Materials. In: Krishnan, A., Chuturgoon, A. (eds) Integrative Nanomedicine for New Therapies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-36260-7_1

Download citation

Publish with us

Policies and ethics