Skip to main content

Spaces of Ultradifferentiable Functions of Multi-anisotropic Type

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 553 Accesses

Abstract

The paper deals first with the relationship between multi-anisotropic Gevrey spaces and Denjoy-Carleman spaces and then it introduces a class of ultradifferentiable functions unifying these both spaces.

Dedicated to Prof. Luigi Rodino on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Beurling. Quasi-analyticity and general distributions. Lecture 4 and 5, AMS Summer Institute, Standford, (1961).

    Google Scholar 

  2. G. Björck. Linear partial differential operators and generalized distributions. Ark. Mat., Vol. 6, p. 351–407, (1966).

    Article  MathSciNet  Google Scholar 

  3. R. P. Boas. A theorem on analytic functions of a real variable. Bull. A. M. S., Vol. 41, p. 233–236, (1935).

    Article  MathSciNet  Google Scholar 

  4. J. Bonet, R. Meise, S. N. Melikhov. A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin, Vol. 14–3, p. 425–444, (2007).

    Article  MathSciNet  Google Scholar 

  5. C. Bouzar, R. Chaïli. Vecteurs Gevrey de systèmes quasielliptiques. Annales de Mathématiques de l’Université de Sidi Bel Abbés, T. 5, p. 33–43, (1998).

    Google Scholar 

  6. C. Bouzar, R. Chaïli. Vecteurs Gevrey d’opérateurs différentiels quasi-homogènes. Bull. of the Belgian Math. Society, Vol. 9, NÂ 2, p. 299–310, (2002).

    Google Scholar 

  7. C. Bouzar, R. Chaïli. Régularité des vecteurs de Beurling de systèmes elliptiques. Maghreb Math. Rev., T. 9, NÂ 1–2, p. 43–53, (2000).

    Google Scholar 

  8. C. Bouzar, R. Chaïli. Une généralisation de la propriété des itérés. Arch. Math., Vol. 76, NÂ 1, p. 57–66, (2001).

    Google Scholar 

  9. C. Bouzar, R. Chaïli. Gevrey vectors of multi-quasi-elliptic systems. Proc. Amer. Math. Soc., Vol. 131–5, p. 1565–1572, (2003).

    Article  MathSciNet  Google Scholar 

  10. C. Bouzar, R. Chaïli. Iterates of differential operators. Progress in Analysis, Vol. I, (Berlin 2001), p. 135–141, World Sci. Publ., (2003).

    Google Scholar 

  11. C. Bouzar, L. R. Volevich. Hypoelliptic systems connected with Newton’s polyhedron. Math. Nachr., Vol. 273, p. 14–27, (2004).

    Article  MathSciNet  Google Scholar 

  12. C. Bouzar, A. Dali. Multi-anisotropic Gevrey regularity of hypoelliptic operators. Operator Theory : Advances and Applications, Vol. 189, p. 265–273, (2008).

    MathSciNet  MATH  Google Scholar 

  13. C. Bouzar, A. Dali. The Gevrey regularity of multi-quasielliptic operators. Annali dell Universita di Ferrara, Vol. 57, p. 201–209, (2011).

    Article  MathSciNet  Google Scholar 

  14. R. W. Braun, R. Meise, B. A. Taylor. Ultradifferentiable functions and Fourier analysis. Results Math., T. 17, N 3–4, p. 206–237, (1990).

    Google Scholar 

  15. D. Calvo, M. C. Gomez-Collado. On some generalizations of Gevrey classes. Math. Nach., Vol. 284, NÂ 7, p. 856–874, (2011).

    Google Scholar 

  16. D. Calvo, A. Morando, L. Rodino. Inhomogeneous Gevrey classes and ultradistributions. J. Math. Anal. Appl., 297, p. 720–739, (2004).

    Article  MathSciNet  Google Scholar 

  17. T. Carleman. Les fonctions quasi-analytiques. Gauthier-Villars, (1926).

    MATH  Google Scholar 

  18. A. Denjoy. Sur les fonctions quasi-analytiques de variable r éelle. C. R. Acad. Sci. Paris, T. 173, p. 1320–1322, (1921).

    Google Scholar 

  19. J. Friberg. Multi-quasielliptic polynomials. Ann. Sc. Norm. Sup. Pisa, Cl. di Sc., Vol. 21, p. 239–260, (1967).

    MathSciNet  MATH  Google Scholar 

  20. M. Gevrey. Sur la nature analytique des solutions des é quations aux dérivées partielles. Ann. Ec. Norm. Sup. Paris, T. 35, p. 129–190, (1918).

    Google Scholar 

  21. S. G. Gindikin, L. R. Volevich. The method of Newton polyhedron in the theory of partial differential equations. Kluwer, (1992).

    MATH  Google Scholar 

  22. L. Hörmander, Linear partial differential operators. Springer, (1963).

    Book  Google Scholar 

  23. L. Hörmander. Distribution theory and Fourier analysis. Springer, (2000).

    Google Scholar 

  24. H. Komatsu. A characterization of real analytic functions. Proc. Japan Acad., Vol. 36, p. 90–93, (1960).

    Article  MathSciNet  Google Scholar 

  25. O. Liess, L. Rodino. Inhomogeneous Gevrey classes and related pseudodifferential operators. Suppl. Boll. Un. Mat. It., Vol. 3, 1-C, p. 233–323, (1984).

    Google Scholar 

  26. J. L. Lions, E. Magenes. Non homogenous boundary value problems and applications, Vol. 3. Springer, (1973).

    Google Scholar 

  27. S. Mandelbrojt. Séries adhérentes, ré gularisations des suites, Applications. Gauthier-Villars, (1952).

    MATH  Google Scholar 

  28. G. Métivier. Propriété des itérés et ellipticité. Comm. P.D.E., Vol. 3, N 9, p. 827–876, (1978).

    Google Scholar 

  29. V. P. Mikhailov. On the behavior at infinity of a class of polynomials. Trudy Math. Inst. Steklov, T. 91, p. 59–81, (1967).

    Google Scholar 

  30. S. N. Nikolsky. The first boundary-value problem for a general linear equation. Dokl. Akad. Nauk SSSR, T. 146, p. 767–769, (1962).

    Google Scholar 

  31. L. Rodino, Linear partial differential operators in Gevrey spaces. World Scientific, (1993).

    Book  Google Scholar 

  32. L. Rodino, F. Nicola. Global pseudo-differential calculus on euclidian spaces. Springer, (2010).

    MATH  Google Scholar 

  33. L. R. Volevich. Local properties of solutions of quasi-elliptic systems. Math. Sbornik (N. S.), T. 59 (101), p. 3–52, (1962).

    Google Scholar 

  34. L. R. Volevich, S. Gindikin, On a class of hypoelliptic operators. Mat. Sb., 75 (117) (3), p. 400–416, (1968).

    Google Scholar 

  35. L. Zanghirati. Iterati di una classe di operatori ipoellittici e classi generalizzate di Gevrey. Boll. U.M.I., Vol. 1, suppl., p. 177–195, (1980).

    Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referee whose remarks helped to improve the quality of the text.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouzar, C. (2020). Spaces of Ultradifferentiable Functions of Multi-anisotropic Type. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_7

Download citation

Publish with us

Policies and ethics