Skip to main content

Linear Perturbations of the Wigner Transform and the Weyl Quantization

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Abstract

We study a class of quadratic time-frequency representations that, roughly speaking, are obtained by linear perturbations of the Wigner transform. They satisfy Moyal’s formula by default and share many other properties with the Wigner transform, but in general they do not belong to Cohen’s class. We provide a characterization of the intersection of the two classes. To any such time-frequency representation, we associate a pseudodifferential calculus. We investigate the related quantization procedure, study the properties of the pseudodifferential operators, and compare the formalism with that of the Weyl calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is,

    $$\displaystyle \begin{aligned} M^1(\mathbb{R}^{2d})\simeq M^1 (\mathbb{R}^d) \widehat{\otimes} M^1 (\mathbb{R}^d),\end{aligned}$$

    where the symbol \(\widehat {\otimes }\) denotes the projective tensor product (see [35] for the details).

  2. 2.

    Beware that \((A^{\#})_{ij}\neq A^{\#}_{ij} = (A_{ij}^{\top })^{-1}\), i, j = 1,  2.

  3. 3.

    Let \(Qf:\mathbb {R}_{\left (x,\omega \right )}^{2d}\rightarrow \mathbb {C}\) be a time-frequency distribution associated with the signal \(f:\mathbb {R}_{t}^{d}\rightarrow \mathbb {C}\) in a suitable function space. Recall that Q is said to satisfy the strong support property if

    $$\displaystyle \begin{aligned} f\left(x\right)=0\Leftrightarrow Qf\left(x,\omega\right)=0, \quad \forall \omega \in \mathbb{R}^d, \qquad \hat{f}\left(\omega\right)=0\Leftrightarrow Qf\left(x,\omega\right)=0, \qquad \forall x\in\mathbb{R}^{d}.\end{aligned} $$
  4. 4.

    With the notation of the previous footnote, we say that Q satisfies the weak support property if, for any signal f:

    $$\displaystyle \begin{aligned} \pi_{x}\left(\mathrm{supp}Qf\right)\subset\mathcal{C}\left(\mathrm{supp}f\right), \qquad \pi_{\omega}\left(\mathrm{supp}Qf\right)\subset\mathcal{C}\left(\mathrm{supp}\hat{f}\right), \end{aligned}$$

    where \(\pi _{x}:\mathbb {R}_{\left (x,\omega \right )}^{2d}\rightarrow \mathbb {R}_{x}^{d}\) and \(\pi _{\omega }:\mathbb {R}_{\left (x,\omega \right )}^{2d}\rightarrow \mathbb {R}_{\omega }^{d}\) are the projections onto the first and second factors (\(\mathbb {R}_{\left (x,\omega \right )}^{2d}\simeq \mathbb {R}_{x}^{d}\times \mathbb {R}_{\omega }^{d}\)) and \(\mathcal {C}\left (E\right )\) is the closed convex hull of \(E\subset \mathbb {R}^{d}\).

References

  1. Bayer, D.: Bilinear Time-Frequency Distributions and Pseudodifferential Operators. PhD Thesis, University of Vienna (2010)

    Google Scholar 

  2. Bényi, A., Gröchenig, K., Okoudjou, K., and Rogers, L. G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal.246 (2007), no. 2, 366–384

    Article  MathSciNet  Google Scholar 

  3. Boggiatto, P., Carypis, E., and Oliaro, A.: Wigner representations associated with linear transformations of the time-frequency plane. In Pseudo-Differential Operators: Analysis, Applications and Computations (275–288), Springer (2011)

    Google Scholar 

  4. Boggiatto, P., De Donno, G., and Oliaro, A.: Weyl quantization of Lebesgue spaces. Math. Nachr.282 (2009), no. 12, 1656–1663

    Article  MathSciNet  Google Scholar 

  5. Boggiatto, P., De Donno, G., and Oliaro, A.: Time-frequency representations of Wigner type and pseudo-differential operators. Trans. Amer. Math. Soc.362 (2010), no. 9, 4955–4981

    Article  MathSciNet  Google Scholar 

  6. Cohen, L.: Time-frequency distributions – A review. Proc. IEEE77 (1989), no. 7, 941–981

    Article  Google Scholar 

  7. Cohen, L.: Time-frequency Analysis. Prentice Hall (1995)

    Google Scholar 

  8. Cohen, L.: Generalized phase-space distribution functions. J. Math. Phys.7 (1966), no. 5, 781–786

    Article  MathSciNet  Google Scholar 

  9. Cohen, L.: The Weyl Operator and its Generalization. Springer (2012)

    Google Scholar 

  10. Cordero, E., and Nicola, F.: Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation. J. Funct. Anal.254 (2008), no. 2, 506–534

    Article  MathSciNet  Google Scholar 

  11. Cordero, E., and Trapasso, S. I.: Linear Perturbations of the Wigner Distribution and the Cohen Class. Anal. Appl. - DOI: https://doi.org/10.1142/S0219530519500052 (2018)

  12. Cordero, E., Gröchenig, K., Nicola, F., and Rodino, L.: Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class. J. Math. Phys.55 081506 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cordero, E., de Gosson, M., and Nicola, F.: Time-frequency analysis of Born-Jordan pseudodifferential operators. J. Funct. Anal.272 (2017), no. 2, 577–598

    Article  MathSciNet  Google Scholar 

  14. Cordero, E., de Gosson, M., Dörfler, M., and Nicola, F.: On the symplectic covariance and interferences of time-frequency distributions. SIAM J. Math. Anal.50 (2018), no. 2, 2178–2193

    Article  MathSciNet  Google Scholar 

  15. Cordero, E., Nicola, F., and Trapasso, S. I.: Almost diagonalization of τ-pseudodifferential operators with symbols in Wiener amalgam and modulation spaces. J. Fourier Anal. Appl. - DOI: https://doi.org/10.1007/s00041-018-09651-z (2018)

  16. Cordero, E., D’Elia, L., and Trapasso, S. I.: Norm estimates for τ-pseudodifferential operators in Wiener amalgam and modulation spaces. J. Math. Anal. Appl.471 (2019), no. 1–2, 541–563

    Article  MathSciNet  Google Scholar 

  17. de Gosson, M.: Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Springer (2011)

    Google Scholar 

  18. de Gosson, M.: Born-Jordan quantization. Fundamental Theories of Physics, Vol. 182, Springer [Cham], (2016)

    Google Scholar 

  19. Feichtinger, H. G.: On a new Segal algebra. Monatsh. Math.92 (1981), no. 4, 269–289

    Article  MathSciNet  Google Scholar 

  20. Feichtinger, H. G.: Modulation spaces on locally compact abelian groups, Technical Report, University Vienna, (1983) and also in Wavelets and Their Applications, M. Krishna, R. Radha, S. Thangavelu, editors, Allied Publishers (2003), 99–140.

    Google Scholar 

  21. Feichtinger, H. G.: Generalized amalgams, with applications to Fourier transform, Canad. J. Math., 42 (1990), 395–40

    Article  MathSciNet  Google Scholar 

  22. Feichtinger, H. G., and Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal.146 (1997), no. 2, 464–495.

    Article  MathSciNet  Google Scholar 

  23. Feig, E., and Micchelli, C. A.: L 2-synthesis by ambiguity functions. In Multivariate Approximation Theory IV, 143–156, International Series of Numerical Mathematics. Birkhäuser, Basel, 1989.

    Google Scholar 

  24. Goh, S. S., and Goodman, T. N.: Estimating maxima of generalized cross ambiguity functions, and uncertainty principles. Appl. Comput. Harmon. Anal.34 (2013), no. 2, 234–251.

    Article  MathSciNet  Google Scholar 

  25. Gröchenig, K.: An uncertainty principle related to the Poisson summation formula. Studia Math.121 (1996), no. 1, 87–104.

    Article  MathSciNet  Google Scholar 

  26. Gröchenig, K.: Foundations of Time-frequency Analysis. Appl. Numer. Harmon. Anal., Birkhäuser (2001)

    Google Scholar 

  27. Gröchenig, K.: Uncertainty principles for time-frequency representations. In Advances in Gabor analysis, 11–30, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2003

    Google Scholar 

  28. Gröchenig, K.: A pedestrian’s approach to pseudodifferential operators. In Harmonic analysis and applications, 139–169, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2006

    Google Scholar 

  29. Gröchenig, K.: Time-frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam.22 (2006), no. 2, 703–724

    Article  MathSciNet  Google Scholar 

  30. Gröchenig, K., and Rzeszotnik, Z.: Banach algebras of pseudodifferential operators and their almost diagonalization. Ann. Inst. Fourier (Grenoble)58 (2008), no. 7, 2279–2314

    Article  MathSciNet  Google Scholar 

  31. Gröchenig, K., and Strohmer, T.: Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class. J. Reine Angew. Math.613 (2007), 121–146

    MathSciNet  MATH  Google Scholar 

  32. Hlawatsch, F., and Auger, F. (Eds.).: Time-frequency Analysis. John Wiley & Sons (2013)

    Google Scholar 

  33. Hlawatsch, F., and Boudreaux-Bartels, G. F.: Linear and quadratic time-frequency signal representations. IEEE Signal Proc. Mag.9 (1992), no. 2, 21–67

    Article  Google Scholar 

  34. Hudson, R. L.: When is the Wigner quasi-probability density non-negative? Rep. Mathematical Phys.6 (1974), no. 2, 249–252

    Article  MathSciNet  Google Scholar 

  35. Jakobsen, M. S.: On a (no longer) new Segal algebra: a review of the Feichtinger algebra. J. Fourier Anal. Appl.24 (2018), no. 6, 1579–1660

    Article  MathSciNet  Google Scholar 

  36. Janssen, A. J. E. M.:A note on Hudson’s theorem about functions with nonnegative Wigner distributions. SIAM J. Math. Anal.15 (1984), no. 1, 170–176

    Google Scholar 

  37. A. J. E. M. Janssen: Bilinear time-frequency distributions. In Wavelets and their applications (Il Ciocco, 1992), 297–311, Kluwer Acad. Publ., Dordrecht, 1994

    Google Scholar 

  38. Janssen, A. J. E. M.: Positivity and spread of bilinear time-frequency distributions. In The Wigner distribution, 1–58, Elsevier Sci. B. V., Amsterdam, 1997

    Google Scholar 

  39. Lu, T., and Shiou, S.: Inverses of 2 × 2 block matrices. Comput. Math. Appl.43 (2002), no. 1–2, 119–129

    Article  MathSciNet  Google Scholar 

  40. W. Mecklenbräuker and F. Hlawatsch, editors. The Wigner distribution. Elsevier Science B.V., Amsterdam, 1997. Theory and applications in signal processing.

    Google Scholar 

  41. Sjöstrand, J.: An algebra of pseudodifferential operators. Math. Res. Lett.1 (1994), no. 2, 185–192

    Article  MathSciNet  Google Scholar 

  42. Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal., 207 (2004), no. 2, 399–429

    Google Scholar 

  43. Toft, J.: Matrix parameterized pseudo-differential calculi on modulation spaces. In Generalized Functions and Fourier Analysis, 215–235, Birkhäuser, 2017

    Google Scholar 

  44. Wigner, E.: On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev., 40 (1932), no. 5, 749–759

    Article  Google Scholar 

Download references

Acknowledgements

E. Cordero and S. I. Trapasso are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). K. Gröchenig acknowledges support from the Austrian Science Fund FWF, project P31887-N32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Cordero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayer, D., Cordero, E., Gröchenig, K., Trapasso, S.I. (2020). Linear Perturbations of the Wigner Transform and the Weyl Quantization. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_5

Download citation

Publish with us

Policies and ethics