Skip to main content

Quantization and Coorbit Spaces for Nilpotent Groups

  • Chapter
  • First Online:
  • 554 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We reconsider the quantization of symbols defined on the product between a nilpotent Lie algebra and its dual. To keep track of the non-commutative group background, the Lie algebra is endowed with the Baker-Campbell-Hausdorff product, making it via the exponential diffeomorphism a copy of its unique connected simply connected nilpotent Lie group. Using harmonic analysis tools, we emphasize the role of a Weyl system, of the associated Fourier-Wigner transformation and, at the level of symbols, of an important family of exponential functions. Such notions also serve to introduce a family of phase-space shifts. These are used to define and briefly study a new class of coorbit spaces of symbols and its relationship with coorbit spaces of vectors, defined via the Fourier-Wigner transform.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. J. Corwin and F. P. Greenleaf: Representations of Nilpotent Lie Groups and Applications, Cambridge Univ. Press, 1990.

    MATH  Google Scholar 

  2. M. Christ, D. Geller, P. Glowacki, D. Polin, Pseudodifferential Operators on Groups with Dilations, Duke Math. J., 68, 31–65, (1992).

    Article  MathSciNet  Google Scholar 

  3. E. Cordero, K. Gröchenig, F. Nicola and L. Rodino: Wiener Algebras of Fourier Integral Operators, J. Math. Pures Appl., 99, 219–233, (2013).

    Article  MathSciNet  Google Scholar 

  4. E. Cordero, F. Nicola and L. Rodino: Time-Frequency Analysis of Fourier Integral Operators, Comm. Pure Appl. Anal., 9(1), 1–21, (2010).

    Article  MathSciNet  Google Scholar 

  5. E. Cordero and L. Rodino: Time-Frequency Analysis: Function Spaces and Applications, Note di Matematica, 31, 173–189, (2011).

    MathSciNet  MATH  Google Scholar 

  6. E. Cordero, J. Toft and P. Wahlberg: Sharp Results for the Weyl Product on Modulation Spaces, J. Funct. Anal., 267(8), 3016–3057, (2014).

    Article  MathSciNet  Google Scholar 

  7. A. S. Dynin: An Algebra of Pseudodifferential Operators on the Heisenberg Group: Symbolic Calculus, Dokl. Akad. Nauk SSSR, 227, 508–512, (1976).

    MathSciNet  MATH  Google Scholar 

  8. H. G. Feichtinger: On a New Segal Algebra, Monatsh. Mat. 92(4), 269–289, (1981).

    Article  MathSciNet  Google Scholar 

  9. H. G. Feichtinger: Modulation Spaces on Locally Compact Abelian Groups, Proc. of “International Conference on Wavelets and Applications”, Chenai, India, 99–140, 1983.

    Google Scholar 

  10. H. G. Feichtinger and K. Gröchenig: Banch Spaces Associated to Integrable Group Representations and Their Atomic Decompositions I, J. Funct. Anal. 86, 307–340, (1989).

    Article  MathSciNet  Google Scholar 

  11. V. Fischer and M. Ruzhansky: A Pseudo-differential Calculus on Graded Nilpotent Groups, in Fourier Analysis, pp. 107–132, Trends in Mathematics, Birkhäuser, 2014.

    Google Scholar 

  12. V. Fischer and M. Ruzhansky: Quantization on Nilpotent Lie Groups, Progress in Mathematics, 314, Birkhäuser, 2016.

    Google Scholar 

  13. V. Fischer, D. Rottensteiner and M. Ruzhansky: Heisenberg-Modulation Spaces at the Crossroads of Coorbit Theory and Decomposition SpaceTheory, Preprint ArXiV.

    Google Scholar 

  14. P. Głowacki: A Symbolic Calculus andL 2-Boundedness on Nilpotent Lie Groups, J. Funct. Anal. 206, 233–251, (2004).

    Article  MathSciNet  Google Scholar 

  15. P. Głowacki: The Melin Calculus for General Homogeneous Groups, Ark. Mat., 45(1), 31–48, (2007).

    Article  MathSciNet  Google Scholar 

  16. P. Głowacki: Invertibility of Convolution Operators on Homogeneous Groups, Rev. Mat. Iberoam. 28(1), 141–156, (2012).

    Article  MathSciNet  Google Scholar 

  17. K. Gröchenig: Foundations of Time-Frequency Analysis, Birkhäuser Boston Inc., Boston, MA, 2001.

    Book  Google Scholar 

  18. K. Gröchenig: Time-Frequency Analysis of Sjöstrand Class, Revista Mat. Iberoam. 22(2), 703–724, (2006).

    Article  MathSciNet  Google Scholar 

  19. K. Gröchenig: Composition and Spectral Invariance of Pseudodifferential Operators on Modulation Spaces, J. Anal. Math. 98, 65–82, (2006).

    Article  MathSciNet  Google Scholar 

  20. K. Gröchenig: A Pedestrian Approach to Pseudodifferential Operators, In: C. Heil editor, Harmonic Analysis and Applications, Birkhäuser, Boston, 2006.

    MATH  Google Scholar 

  21. K. Gröchenig and C. Heil: Modulation Spaces and Pseudodifferential Operators, Integral Equations Operator Theory, 34, 439–457, (1999).

    Article  MathSciNet  Google Scholar 

  22. K. Gröchenig and Z. Rzeszotnik: Banach Algebras of Pseudodifferential Operators and Their Almost Diagonalization, Ann. Inst. Fourier. 58(6), 2279–2314, (2008).

    Article  MathSciNet  Google Scholar 

  23. K. Gröchenig and T. Strohmer: Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand’s Symbol Class, J. Reine Angew. Math. 613, 121–146, (2007).

    MathSciNet  MATH  Google Scholar 

  24. A. Holst, J. Toft and P. Wahlberg: Weyl Product Algebras and Modulation Spaces, J. Funct. Anal. 251, 463–491, (2007).

    Article  MathSciNet  Google Scholar 

  25. R. Howe: Quantum Mechanics and Partial Differential Operators, J. Funct. Anal. 38, 188–254, (1980).

    Article  Google Scholar 

  26. R. Howe: The Role of the Heisenberg Group in Harmonic Analysis, Bull. Amer. Math. Soc. 3(2), 821–843, (1980).

    Article  MathSciNet  Google Scholar 

  27. D. Manchon: Formule de Weyl pour les groupes de Lie nilpotente, J. Reine Angew. Mat. 418, 77–129, (1991).

    MATH  Google Scholar 

  28. D. Manchon: Calcul symbolyque sur les groupes de Lie nilpotentes et applications, J. Funct. Anal. 102 (2), 206–251, (1991).

    Article  MathSciNet  Google Scholar 

  29. M. Măntoiu: Coorbit Spaces of Symbols for Square Integrable Families of Operators, Math. Reports, 18(1), 63–83 (2016).

    MathSciNet  MATH  Google Scholar 

  30. M. Măntoiu: Berezin-Type Operators on the Cotangent Bundle of a Nilpotent Group, submitted.

    Google Scholar 

  31. M. Măntoiu and R. Purice: On Fréchet-Hilbert Algebras, Archiv der Math. 103(2), 157–166, (2014).

    Article  MathSciNet  Google Scholar 

  32. M. Măntoiu and M. Ruzhansky: Pseudo-differential Operators, Wigner Transform and Weyl Systems on Type I Locally Compact Groups, Doc. Math., 22 , 1539–1592, (2017).

    MathSciNet  MATH  Google Scholar 

  33. M. Măntoiu and M. Ruzhansky: Quantizations on Nilpotent Lie Groups and Algebras Having Flat Coadjoint Orbits, J. Geometric Analysis, (2019).

    Google Scholar 

  34. A. Melin: Parametrix Constructions for Right Invariant Differential Operators on Nilpotent Groups, Ann. Global Anal. Geom. 1(1), 79–130, (1983).

    Article  MathSciNet  Google Scholar 

  35. K. Miller: Invariant Pseudodifferential Operators on Two Step Nilpotent Lie Groups, Michigan Math. J. 29, 315–328, (1982).

    Article  MathSciNet  Google Scholar 

  36. K. Miller: Inverses and Parametrices for Right-Invariant Pseudodifferential Operators on Two-Step Nilpotent Lie Groups, Trans. of the AMS, 280 (2), 721–736, (1983).

    Article  MathSciNet  Google Scholar 

  37. M. Ruzhansky and V. Turunen: Pseudodifferential Operators and Symmetries, Pseudo-Differential Operators: Theory and Applications 2, Birkhäuser Verlag, 2010.

    Book  Google Scholar 

  38. J. Sjöstrand: An Algebra of Pseudodifferential Operators, Math. Res. Lett. 1(2), 185–192, (1994).

    Article  MathSciNet  Google Scholar 

  39. J. Toft: Continuity Properties for Modulation Spaces, with Applications to Pseudo-differential Calculus. I, J. Funct. Anal. 207(2), 399–426, (2004).

    Article  MathSciNet  Google Scholar 

  40. J. Toft: Continuity Properties for Modulation Spaces, with Applications to Pseudo-differential Calculus. II, Annals of Global Analysis and Geometry, 26, 73–106, (2004).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author has been supported by the Fondecyt Project 1160359.

He is grateful for having the opportunity to participate in the Conference MicroLocal and Time Frequency Analysis 2018 in honor of Luigi Rodino on the occasion of his 70th Birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Măntoiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Măntoiu, M. (2020). Quantization and Coorbit Spaces for Nilpotent Groups. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_20

Download citation

Publish with us

Policies and ethics