Skip to main content

Strictly Hyperbolic Cauchy Problems with Coefficients Low-Regular in Time and Space

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 552 Accesses

Abstract

We consider the strictly hyperbolic Cauchy problem

$$\displaystyle \begin {cases} D_t^m u - \sum \limits _{j = 0}^{m-1} \sum \limits _{|\gamma |+j = m} a_{m-j,\,\gamma }(t,\,x) D_x^\gamma D_t^j u = 0,\\ D_t^{k-1}u(0,\,x) = g_k(x),\,k = 1,\,\ldots ,\,m, \end {cases} $$

for \((t,\,x) \in [0,\,T]\times \mathbb {R}^n\) with coefficients belonging to the Zygmund class \(C_\ast ^s\) in x and having a modulus of continuity below Lipschitz in t. Imposing additional conditions to control oscillations, we obtain a global (on [0, T]) L 2 energy estimate without loss of derivatives for \(s \geq \max \{1+\varepsilon ,\,\frac {2m_0}{2-m_0}\}\), where m 0 is linked to the modulus of continuity of the coefficients in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels, H.: Pseudodifferential Boundary Value Problems with Non-Smooth Coefficients. Comm. Partial Differential Equations 30.10 (2005), 1463–1503, doi: https://doi.org/10.1080/03605300500299554.

  2. Agliardi, R., Cicognani, M.: Operators of p-evolution with nonregular coefficients in the time variable. J. Differential Equations 202.1 (2004), 143–157, doi: https://doi.org/10.1016/j.jde.2004.03.028.

  3. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations., Springer, Berlin and Heidelberg (2011).

    Book  Google Scholar 

  4. Cicognani, M., Colombini, F.: Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem. J. Differential Equations 221.1 (2006), 143–157, doi: https://doi.org/10.1016/j.jde.2005.06.019.

  5. Cicognani, M., Lorenz, D.: Strictly hyperbolic equations with coefficients low-regular in time and smooth in space. J. Pseudo-Differ. Oper. Appl. (2017), online first, doi: https://doi.org/10.1007/s11868-017-0203-2.

  6. Colombini, F., De Giorgi E., Spagnolo, S.: Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Scuola. Norm.-Sci. 6.3 (1979), 511–559.

    MathSciNet  MATH  Google Scholar 

  7. Colombini, F., Del Santo, D., Kinoshita, T.: Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1.2 (2002), 327–358.

    MathSciNet  MATH  Google Scholar 

  8. Colombini, F., Del Santo, D., Reissig, M.: On the optimal regularity of coefficients in hyperbolic Cauchy problems. Bull. Sci. Math. 127.4 (2003), 328–347, doi: https://doi.org/10.1016/S0007-4497(03)00025-3.

  9. Colombini, F., Lerner, N.: Hyperbolic operators with non-Lipschitz coefficients. Duke Math. J. 77.3 (1995), 657–698, doi: https://doi.org/10.1215/S0012-7094-95-07721-7.

  10. Hirosawa, F.: On the Cauchy problem for second order strictly hyperbolic equations with non-regular coefficients. Math. Nachr. 256 (2003), 29–47, doi: https://doi.org/10.1002/mana.200310068.

  11. Hirosawa, F., Reissig, M.: Well-Posedness in Sobolev Spaces for Second-Order Strictly Hyperbolic Equations with Nondifferentiable Oscillating Coefficients. Ann. Global Anal. Geom. 25.2 (2004), 99–119, doi: https://doi.org/10.1023/B:AGAG.0000018553.77318.81.

  12. Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin, Heidelberg (1963).

    Book  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators., Reprint of the 1994 ed., Springer, Berlin (2007).

    Google Scholar 

  14. Hurd, A. E., Sattinger, D. H.: Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients. Trans. Amer. Math. Soc. 132 (1968), 159–174, doi: https://doi.org/10.2307/1994888.

  15. Jachmann, K., Wirth, J.: Diagonalisation schemes and applications. Ann. Mat. Pura Appl (4) 189.4 (2010), 571–590.

    Google Scholar 

  16. Kinoshita, T., Reissig, M.: About the loss of derivatives for strictly hyperbolic equations with non-Lipschitz coefficients. Adv. differential Equations 10.2 (2005), 191–222.

    MathSciNet  MATH  Google Scholar 

  17. Kumano-go, H.: Pseudo-differential operators., English-language ed. MIT Press, Cambridge, Massachusetts 1982.

    MATH  Google Scholar 

  18. Marschall, J., Löfström, J., Marschall, J.: Pseudo-differential operators with nonregular symbols of the class Sm p p. Comm. Partial Differential Equations 12.8 (1987), 921–965, doi: https://doi.org/10.1080/03605308708820514.

  19. Mizohata, S.: The theory of partial differential equations., Cambridge University Press, New York 1973.

    MATH  Google Scholar 

  20. Reissig, M.: Hyperbolic equations with non-Lipschitz coefficients. Rend. Sem. Mat. Univ. Politec. Torino 61.2 (2003), 135–182.

    MathSciNet  MATH  Google Scholar 

  21. Tataru, D.: On the Fefferman-Phong inequality and related problems. Comm. Partial Differential Equations 27.11-12 (2002), 2101–2138, doi: https://doi.org/10.1081/PDE-120016155.

  22. Taylor, M.: Pseudodifferential Operators and Nonlinear PDE., Vol. 100. Progress in Mathematics. Birkäuser, Boston 1973.

    Google Scholar 

  23. Triebel, H.: Theory of function spaces., Modern Birkhäuser Classics. Springer, Basel 2010.

    Google Scholar 

Download references

Acknowledgements

The author wants to express his gratitude to Michael Reissig for many fruitful discussions and suggestions. Furthermore, he wants to thank Daniele Del Santo for his hospitality and the suggested improvements during the authors stay at Trieste University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, D. (2020). Strictly Hyperbolic Cauchy Problems with Coefficients Low-Regular in Time and Space. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_19

Download citation

Publish with us

Policies and ethics