Skip to main content

Deterministic and Probabilistic Models for Energy Management in Distribution Systems

  • Chapter
  • First Online:
Handbook of Optimization in Electric Power Distribution Systems

Part of the book series: Energy Systems ((ENERGY))

Abstract

Distribution network conventionally have been designed and operated as some passive and radial networks. However, the presence of distributed energy resources (DERs) has changed these networks’ vision into some active ones. In this regard, new operational studies in the distribution level such as energy management problem has brought into existence. In this regard, this chapter mainly investigates the problem of energy management in distribution systems penetrated by DERs. To reach this goal, different classes of energy management problem, i.e., deterministic and stochastic models are carefully put under investigation. Extracting the mathematical model of these algorithms, it has been discussed that which algorithms should be applied to effectively solve the associated optimization problem. At the end, two examples associated with stochastic modeling of energy management problem, implemented on a sample case study, are provided to show how this problem can be applied in active distribution networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, W., Xie, X., Chu, C., Gadh, R.: Distributed optimal energy management in microgrids. IEEE Trans. Smart Grid. 6(3), 1137–1146 (2015)

    Article  Google Scholar 

  2. Renewable energy and energy efficiency organization (SATBA) [Online]. http://satba.gov.ir

  3. Turitsyn, K., Sulc, P., Backhaus, S., Chertkov, M.: Options for control of reactive power by distributed photovoltaic generators. Proc. IEEE. 99(6), 1063–1073 (2011)

    Article  Google Scholar 

  4. Patnam, B.S.K., Pindoriya, N.M.: Centralized stochastic energy management framework of an aggregator in active distribution network. IEEE Trans. Ind. Inform. (2018)

    Google Scholar 

  5. Kabirifar, M., et al.: Centralized framework to coordinate residential demand response potentials. In: Proceeding of International Smart Grid Conference, Gwangjo, Korea, pp. 243–248 (2015)

    Google Scholar 

  6. Zhang, C., Xu, Y., Dong, Z.Y., Ma, J.: Robust operation of microgrids via two-stage coordinated energy storage and direct load control. IEEE Trans. Power Syst. 32(4), 2858–2868 (2017)

    Article  Google Scholar 

  7. Igualada, L., Corchero, C., Cruz-Zambrano, M., Heredia, F.: Optimal energy management for a residential microgrid including a vehicle-to-grid system. IEEE Trans. Smart Grid. 5(4), 2163–2172 (2014)

    Article  Google Scholar 

  8. Nafisi, H., Agah, S.M.M., Abyaneh, H.A., Abedi, M.: Two-stage optimization method for energy loss minimization in microgrid based on smart power management scheme of PHEVs. IEEE Trans. Smart Grid. 7(3), 1268–1276 (2016)

    Article  Google Scholar 

  9. Mahmud, K., Hossain, M.J., Town, G.E.: Peak-load reduction by coordinated response of photovoltaics, battery storage, and electric vehicles. IEEE Access. 6, 29353–29365 (2018)

    Article  Google Scholar 

  10. Nguyen, H.K., Khodaei, A., Han, Z.: Incentive mechanism design for integrated microgrids in peak ramp minimization problem. IEEE Trans. Smart Grid. 9(6), 5774–5785 (2018)

    Article  Google Scholar 

  11. Meng, W., Wang, X.: Distributed energy management in smart grid with wind power and temporally coupled constraints. IEEE Trans. Ind. Electron. 64(8), 6052–6062 (2017)

    Article  Google Scholar 

  12. Carpinelli, G., Mottola, F., Proto, D., Russo, A.: A multi-objective approach for microgrid scheduling. IEEE Trans. Smart Grid. 8(5), 2109–2118 (2017)

    Article  Google Scholar 

  13. Zhang, Y., Gatsis, N., Giannakis, G.B.: Robust energy management for microgrids with high-penetration renewables. IEEE Trans. Sustain. Energy. 4(4), 944–953 (2013)

    Article  Google Scholar 

  14. Bolognani, S., Zampieri, S.: On the existence and linear approximation of the power flow solution in power distribution networks. IEEE Trans. Power Syst. 31(1), 163–172 (2016)

    Article  Google Scholar 

  15. Jabr, R.A.: Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21(3), 1458–1459 (2006)

    Article  Google Scholar 

  16. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. Int. J. Electr. Power Energy Syst. 30(6–7), 383–392 (2008)

    Article  Google Scholar 

  17. Gan, L., Low, S.H.: Convex relaxations and linear approximation for optimal power flow in multiphase radial networks. In: 2014 Power Systems Computation Conference, pp. 1–9 (2014)

    Google Scholar 

  18. Farivar, M., Low, S.H.: Branch flow model: relaxations and convexification—Part I. IEEE Trans. Power Syst. 28(3), 2554–2564 (2013)

    Article  Google Scholar 

  19. Farivar, M., Low, S.H.: Branch flow model: relaxations and convexification—Part II. IEEE Trans. Power Syst. 28(3), 2565–2572 (2013)

    Article  Google Scholar 

  20. Kardakos, E.G., Simoglou, C.K., Bakirtzis, A.G.: Optimal offering strategy of a virtual power plant: a stochastic bi-level approach. IEEE Trans. Smart Grid. 7(2), 794–806 (2016)

    Google Scholar 

  21. Kou, P., Liang, D., Lin, G.: Stochastic energy scheduling in microgrids considering the uncertainties in both supply and demand. IEEE Syst. J. 12(3), 2589–2600 (2018)

    Article  Google Scholar 

  22. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: Stochastic energy management of microgrids during unscheduled islanding period. IEEE Trans. Indus. Inform. 13(3), 1079–1087 (2017)

    Article  Google Scholar 

  23. Pourghaderi, N., et al.: Commercial demand response programs in bidding of a technical virtual power plant. IEEE Trans. Indus. Inform. (2018)

    Google Scholar 

  24. Belloni, A., Piroddi, L., Prandini, M.: A stochastic optimal control solution to the energy management of a microgrid with storage and renewables. IEEE American Control Conference (ACC), 2016

    Google Scholar 

  25. Pourghaderi, N., et al.: Energy scheduling of a technical virtual power plant in presence of electric vehicles. IEEE Iranian Conference on Electrical Engineering (ICEE), 2017

    Google Scholar 

  26. Schellenberg, A., Rosehart, W., Aguado, J.: Cumulant-based probabilistic optimal power flow (P-OPF) with Gaussian and gamma distributions. IEEE Trans. Power Syst. 20(2), 773–781 (2005)

    Article  Google Scholar 

  27. Geidl, M., Andersson, G.: Optimal power flow of multiple energy carriers. IEEE Trans. Power Syst. 22(1), 145–155 (2007)

    Article  Google Scholar 

  28. Zhang, Y., et al.: Chance-constrained two-stage unit commitment under uncertain load and wind power output using bilinear benders decomposition. IEEE Trans. Power Syst. 32(5), 3637–3647 (2017)

    Article  Google Scholar 

  29. Mohan, V., et al.: Microgrid energy management combining sensitivities, interval and probabilistic uncertainties of renewable generation and loads. IEEE J. Emerg. Selected Topics Circ. Syst. 7(2), 262–270 (2017)

    Article  Google Scholar 

  30. Mohan, V., Singh, J.G., Ongsakul, W.: An efficient two stage stochastic optimal energy and reserve management in a microgrid. Appl. Energy. 160, 28–38 (2015)

    Article  Google Scholar 

  31. Vaccaro, A., Pisani, C., Zobaa, A.F.: Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty. IET Gener. Transm. Distrib. 9(13), 1544–1552 (2015)

    Article  Google Scholar 

  32. Vaccaro, A., Canizares, C.A.: An affine arithmetic-based framework for uncertain power flow and optimal power flow studies. IEEE Trans. Power Syst. 32(1), 274–288 (2017)

    Article  Google Scholar 

  33. Vahid-Pakdel, M.J., et al.: Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Convers. Manag. 145, 117–128 (2017)

    Article  Google Scholar 

  34. Abdulkarim, A., Abdelkader, S.M., Morrow, D.J.: Statistical analyses of wind and solar energy resources for the development of hybrid microgrid. In: 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014). Springer, Cham (2015)

    Chapter  Google Scholar 

  35. Soares, J., et al.: Two-stage stochastic model using benders’ decomposition for large-scale energy resource management in smart grids. IEEE Trans. Ind. Appl. 53(6), 5905–5914 (2017)

    Article  Google Scholar 

  36. Ghazvini, M.A.F., et al.: Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market. Energy. 82, 786–799 (2015)

    Article  Google Scholar 

  37. Wu, H., et al.: Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources. IEEE Trans. Power Syst. 30(6), 2955–2964 (2015)

    Article  Google Scholar 

  38. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Upper Saddle River, NJ (1998)

    Google Scholar 

  39. Etesami, S.R., et al.: Stochastic games for the smart grid energy management with prospect prosumers. IEEE Trans. Autom. Control. 63(8), 2327–2342 (2018)

    Article  Google Scholar 

  40. Dolatabadi, A., et al.: Optimal stochastic design of wind integrated energy hub. IEEE Trans. Indus. Inform. (2017)

    Google Scholar 

  41. Gazijahani, F.S., Salehi, J.: Stochastic-based optimal daily energy management of microgrids in distribution systems. arXiv preprint arXiv:1708.04880 (2017)

    Google Scholar 

  42. Aien, M., Hajebrahimi, A., Fotuhi-Firuzabad, M.: A comprehensive review on uncertainty modeling techniques in power system studies. Renew. Sust. Energ. Rev. 57, 1077–1089 (2016)

    Article  Google Scholar 

  43. Su, W., Wang, J., Roh, J.: Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans. Smart Grid. 5(4), 1876–1883 (2014)

    Article  Google Scholar 

  44. Leithon, J., Sun, S., Lim, T.J.: Demand response and renewable energy management using continuous-time optimization. IEEE Trans. Sustain. Energy. 9(2), 991–1000 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moein Moeini-Aghtaie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabirifar, M., Pourghaderi, N., Rajaei, A., Moeini-Aghtaie, M., Safdarian, A. (2020). Deterministic and Probabilistic Models for Energy Management in Distribution Systems. In: Resener, M., Rebennack, S., Pardalos, P., Haffner, S. (eds) Handbook of Optimization in Electric Power Distribution Systems. Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-36115-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36115-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36114-3

  • Online ISBN: 978-3-030-36115-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics