Skip to main content

Respiratory Drug/Vaccine Delivery Using Nanoparticles

  • Chapter
  • First Online:
Book cover Mucosal Delivery of Drugs and Biologics in Nanoparticles

Abstract

Respiratory diseases account for a very significant portion of worldwide morbidity and mortality but to-date only a limited number of therapeutics are available for direct delivery via inhalation. Nanotechnology offers a range of potential benefits to facilitate the targeted delivery/co-delivery of existing therapeutic agents and to support the delivery of more advanced biotherapeutics e.g. proteins, gene medicines. The clinical and commercial translation of inhalable nanomedicines is not trivial and presents significant formulation, manufacturing, assessment and regulatory challenges. Herein, we explore the range of respiratory diseases being targeted using nanoparticle-based delivery systems for therapeutics and vaccines, the composition and manufacture of these nanoparticles, their integration into relevant inhaler devices, the methods being used to characterize these nanoparticles in vitro and in vivo and the regulatory requirements governing inhaled nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dufort S, Bianchi A, Henry M, Lux F, Le Duc G, Josserand V, et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small. 2015;11(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  2. Elhissi A, Hidayat K, Phoenix DA, Mwesigwa E, Crean S, Ahmed W, et al. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int J Pharm. 2013;444(1–2):193–9.

    Article  CAS  PubMed  Google Scholar 

  3. Porsio B, Cusimano MG, Schillaci D, Craparo EF, Giammona G, Cavallaro G. Nano into micro formulations of tobramycin for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Biomacromolecules. 2017;18(12):3924–35.

    Article  CAS  PubMed  Google Scholar 

  4. Silva AS, Sousa AM, Cabral RP, Silva MC, Costa C, Miguel SP, et al. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int J Pharm. 2017;519(1–2):240–9.

    Article  CAS  PubMed  Google Scholar 

  5. Vencken S, Foged C, Ramsey JM, Sweeney L, Cryan SA, MacLoughlin RJ, et al. Nebulised lipid-polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Res. 2019;5(2)

    Google Scholar 

  6. Park CW, Li X, Vogt FG, Hayes D Jr, Zwischenberger JB, Park ES, et al. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. Int J Pharm. 2013;455(1–2):374–92.

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Vogt FG, Hayes D Jr, Mansour HM. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery. Eur J Pharm Sci. 2014;52:191–205.

    Article  CAS  PubMed  Google Scholar 

  8. Sung JC, Padilla DJ, Garcia-Contreras L, Verberkmoes JL, Durbin D, Peloquin CA, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26(8):1847–55.

    Article  CAS  PubMed  Google Scholar 

  9. Duan J, Vogt FG, Li X, Hayes D Jr, Mansour HM. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery. Int J Nanomedicine. 2013;8:3489–505.

    PubMed  PubMed Central  Google Scholar 

  10. El-Gendy N, Pornputtapitak W, Berkland C. Nanoparticle agglomerates of fluticasone propionate in combination with albuterol sulfate as dry powder aerosols. Eur J Pharm Sci. 2011;44(4):522–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhavna, Ahmad FJ, Mittal G, Jain GK, Malhotra G, Khar RK, et al. Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm 2009;71(2):282–291.

    Google Scholar 

  12. Berger WE, Noonan MJ. Treatment of persistent asthma with Symbicort (budesonide/formoterol inhalation aerosol): an inhaled corticosteroid and long-acting beta2-adrenergic agonist in one pressurized metered-dose inhaler. J Asthma. 2010;47(4):447–59.

    Article  CAS  PubMed  Google Scholar 

  13. Molimard M, Till D, Stenglein S, Singh D, Krummen M. Inhalation devices for long-acting beta2-agonists: efficiency and ease of use of dry powder formoterol inhalers for use by patients with asthma and COPD. Curr Med Res Opin. 2007;23(10):2405–13.

    Article  CAS  PubMed  Google Scholar 

  14. Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015;219:500–18.

    Article  CAS  PubMed  Google Scholar 

  15. Garbuzenko OB, Ivanova V, Kholodovych V, Reimer DC, Reuhl KR, Yurkow E, et al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomedicine. 2017;13(6):1983–92.

    Article  CAS  PubMed  Google Scholar 

  16. Cova E, Colombo M, Inghilleri S, Morosini M, Miserere S, Penaranda-Avila J, et al. Antibody-engineered nanoparticles selectively inhibit mesenchymal cells isolated from patients with chronic lung allograft dysfunction. Nanomedicine (Lond). 2015;10(1):9–23.

    Article  CAS  Google Scholar 

  17. Cova E, Inghilleri S, Pandolfi L, Morosini M, Magni S, Colombo M, et al. Bioengineered gold nanoparticles targeted to mesenchymal cells from patients with bronchiolitis obliterans syndrome does not rise the inflammatory response and can be safely inhaled by rodents. Nanotoxicology. 2017;11(4):534–45.

    Article  CAS  PubMed  Google Scholar 

  18. Machelart A, Salzano G, Li X, Demars A, Debrie AS, Menendez-Miranda M, et al. Intrinsic antibacterial activity of nanoparticles made of beta-Cyclodextrins potentiates their effect as drug Nanocarriers against tuberculosis. ACS Nano. 2019;13(4):3992–4007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Altenburg AF, van de Sandt CE, Li BW, MacLoughlin RJ, Fouchier RA, van Amerongen G, et al. Modified vaccinia virus Ankara preferentially targets antigen presenting cells in vitro, ex vivo and in vivo. Sci Rep. 2017;7(1):8580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holzer B, Morgan SB, Matsuoka Y, Edmans M, Salguero FJ, Everett H, et al. Comparison of Heterosubtypic protection in ferrets and pigs induced by a single-cycle influenza vaccine. J Immunol. 2018;200(12):4068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Low N, Bavdekar A, Jeyaseelan L, Hirve S, Ramanathan K, Andrews NJ, et al. A randomized, controlled trial of an aerosolized vaccine against measles. N Engl J Med. 2015;372(16):1519–29.

    Article  PubMed  Google Scholar 

  22. Meyer M, Garron T, Lubaki NM, Mire CE, Fenton KA, Klages C, et al. Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. J Clin Invest. 2015;125(8):3241–55.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–37.

    Article  PubMed  Google Scholar 

  24. Fromen CA, Robbins GR, Shen TW, Kai MP, Ting JP, DeSimone JM. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci. 2015;112(2):488–93.

    Article  CAS  PubMed  Google Scholar 

  25. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–13.

    Article  CAS  PubMed  Google Scholar 

  26. Li AV, Moon JJ, Abraham W, Suh H, Elkhader J, Seidman MA, et al. Generation of effector memory T cell–based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci Transl Med. 2013, 5(204):204ra130–0.

    Google Scholar 

  27. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.

    Article  CAS  PubMed  Google Scholar 

  28. Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv. 2017;14(7):851–64.

    Article  CAS  PubMed  Google Scholar 

  29. Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31(10):2563–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Su L, Li R, Khan S, Clanton R, Zhang F, Lin Y-N, et al. Chemical Design of both a glutathione-sensitive Dimeric drug guest and a glucose-derived Nanocarrier host to achieve enhanced osteosarcoma lung metastatic anticancer selectivity. J Am Chem Soc. 2018;140(4):1438–46.

    Article  CAS  PubMed  Google Scholar 

  31. Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, et al. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 2013;11(1):1.

    Google Scholar 

  32. Rodrigues TC, Oliveira MLS, Soares-Schanoski A, Chavez-Rico SL, Figueiredo DB, Gonçalves VM, et al. Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One. 2018;13(1):e0191692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nelli RK, Kuchipudi SV, White GA, Perez BB, Dunham SP, Chang K-C. Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res. 2010;6(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo X, Zhang X, Ye L, Zhang Y, Ding R, Hao Y, et al. Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol. J Drug Target. 2014;22(5):421–7.

    Article  CAS  PubMed  Google Scholar 

  35. Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CC, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater. 2014;10(6):2643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banura N, Murase K. Magnetic particle imaging for aerosol-based magnetic targeting. Jpn J Appl Phys. 2017;56(8):088001.

    Article  Google Scholar 

  37. Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol. 2007;2(8):495.

    Article  PubMed  Google Scholar 

  38. Bandyopadhyay A, Moitra S. Bio-organic nanoparticles: breaking the barrier in nanoparticle-mediated pulmonary drug delivery. Int J Pulm & Res Sci. 2017;1(4):555568.

    Google Scholar 

  39. Zhang J, Wu L, Chan H-K, Watanabe W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):441–55.

    Article  CAS  PubMed  Google Scholar 

  40. de Souza CC, Daum N, Lehr C-M. Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev. 2014;75:129–40.

    Article  CAS  Google Scholar 

  41. Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine. 2012;7:3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu C, Shi J, Dai Q, Yin X, Zhang X, Zheng A. In-vitro and in-vivo evaluation of ciprofloxacin liposomes for pulmonary administration. Drug Dev Ind Pharm. 2015;41(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kelly C, Lawlor C, Burke C, Barlow JW, Ramsey JM, Jefferies C, et al. High-throughput methods for screening liposome-macrophage cell interaction. J Liposome Res. 2015;25(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  44. Patil TS, Deshpande AS. Nanostructured lipid carriers-based drug delivery for treating various lung diseases: a state-of-the-art review. Int J Pharm. 2018;547(1–2):209–25.

    Article  CAS  PubMed  Google Scholar 

  45. Grabowski N, Hillaireau H, Vergnaud J, Santiago LA, Kerdine-Romer S, Pallardy M, et al. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells. Int J Pharm. 2013;454(2):686–94.

    Article  CAS  PubMed  Google Scholar 

  46. Rajitha P, Gopinath D, Biswas R, Sabitha M, Jayakumar R. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv. 2016;13(8):1177–94.

    Article  CAS  PubMed  Google Scholar 

  47. Hibbitts A, Lieggi N, McCabe O, Thomas W, Barlow J, O’Brien F, et al. Screening of siRNA nanoparticles for delivery to airway epithelial cells using high-content analysis. Ther Deliv. 2011;2(8):987–99.

    Article  CAS  PubMed  Google Scholar 

  48. Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release. 2014;183:18–26.

    Article  CAS  PubMed  Google Scholar 

  49. Garbuzenko OB, Winkler J, Tomassone MS, Minko T. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Langmuir. 2014;30(43):12941–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaidya B, Parvathaneni V, Kulkarni NS, Shukla SK, Damon JK, Sarode A, et al. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int J Biol Macromol. 2019;122:338–47.

    Article  CAS  PubMed  Google Scholar 

  51. Andrade F, Videira M, Ferreira D, Sarmento B. Micelle-based systems for pulmonary drug delivery and targeting. Drug Deliv Lett. 2011;1(2):171–85.

    CAS  Google Scholar 

  52. Guthi JS, Yang S-G, Huang G, Li S, Khemtong C, Kessinger CW, et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm. 2009;7(1):32–40.

    Article  CAS  Google Scholar 

  53. Grotz E, Tateosian NL, Salgueiro J, Bernabeu E, Gonzalez L, Manca ML, et al. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis. J Drug Deliv Sci Tec. 2019;101170

    Google Scholar 

  54. Amani A, York P, Chrystyn H, Clark BJ. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech. 2010;11(3):1147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Rahman MBA. In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv Transl Res. 2019;9(2):497–507.

    Article  CAS  PubMed  Google Scholar 

  56. Chiang P-C, Alsup JW, Lai Y, Hu Y, Heyde BR, Tung D. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res Lett. 2009;4(3):254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    Article  CAS  PubMed  Google Scholar 

  58. Mukherjee A, Paul M, Mukherjee S. Recent Progress in the Theranostics application of Nanomedicine in lung Cancer. Cancers (Basel). 2019;11(5)

    Google Scholar 

  59. Silva RM, Anderson DS, Peake J, Edwards PC, Patchin ES, Guo T, et al. Aerosolized silver nanoparticles in the rat lung and pulmonary responses over time. Toxicol Pathol. 2016;44(5):673–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  Google Scholar 

  61. Haworth CS, Bilton D, Chalmers JD, Davis AM, Froehlich J, Gonda I, et al. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials. Lancet Respir Med. 2019;7(3):213–26.

    Article  CAS  PubMed  Google Scholar 

  62. Gibbons AM, McElvaney NG, Taggart CC, Cryan S-A. Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J Microencapsul. 2009;26(6):513–22.

    Article  CAS  PubMed  Google Scholar 

  63. Gibbons A, Padilla-Carlin D, Kelly C, Hickey AJ, Taggart C, McElvaney NG, et al. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a guinea pig asthma model. Pharm Res. 2011;28(9):2233–45.

    Article  CAS  PubMed  Google Scholar 

  64. Aragao-Santiago L, Hillaireau H, Grabowski N, Mura S, Nascimento TL, Dufort S, et al. Compared in vivo toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles. Nanotoxicology. 2016;10(3):292–302.

    Article  CAS  PubMed  Google Scholar 

  65. Garg T, Rath G, Goyal AK. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells Nanomed Biotechnol. 2016;44(3):997–1001.

    CAS  PubMed  Google Scholar 

  66. Rubin BK. Physiology of airway mucus clearance. Respir Care. 2002;47(7):761–8.

    PubMed  Google Scholar 

  67. Yang M, Yamamoto H, Kurashima H, Takeuchi H, Yokoyama T, Tsujimoto H, et al. Design and evaluation of inhalable chitosan-modified poly (dl-lactic-co-glycolic acid) nanocomposite particles. Eur J Pharm Sci. 2012;47(1):235–43.

    Article  CAS  PubMed  Google Scholar 

  68. Al-Nemrawi N, Alshraiedeh NA, Zayed A, Altaani B. Low molecular weight chitosan-coated PLGA nanoparticles for pulmonary delivery of tobramycin for cystic fibrosis. Pharmaceuticals. 2018;11(1):28.

    Article  CAS  PubMed Central  Google Scholar 

  69. Paul P, Sengupta S, Mukherjee B, Shaw TK, Gaonkar RH, Debnath MC. Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine. 2018;13(5):501–20.

    Article  CAS  PubMed  Google Scholar 

  70. Schuster BS, Suk JS, Woodworth GF, Hanes J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013;34(13):3439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Suk JS, Kim AJ, Trehan K, Schneider CS, Cebotaru L, Woodward OM, et al. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J Control Release. 2014;178:8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Beyerle A, Merkel O, Stoeger T, Kissel T. PEGylation affects cytotoxicity and cell-compatibility of poly (ethylene imine) for lung application: structure–function relationships. Toxicol Appl Pharmacol. 2010;242(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  73. Chittasupho C, Xie S-X, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci. 2009;37(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  74. Li K, Liang N, Yang H, Liu H, Li S. Temozolomide encapsulated and folic acid decorated chitosan nanoparticles for lung tumor targeting: improving therapeutic efficacy both in vitro and in vivo. Oncotarget. 2017;8(67):111318.

    PubMed  PubMed Central  Google Scholar 

  75. Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett. 2015;9(3):1065–72.

    Article  PubMed  Google Scholar 

  76. Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release. 2008;127(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  77. Costa A, Sarmento B, Seabra V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci. 2018;114:103–13.

    Article  CAS  PubMed  Google Scholar 

  78. Chan H-K, Kwok PCL. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011;63(6):406–16.

    Article  CAS  PubMed  Google Scholar 

  79. Singh M, Manikandan S, Kumaraguru A. Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechno. 2011;1(1):1–11.

    Article  CAS  Google Scholar 

  80. Mu RH. Manufacturing of nanoparticles by milling and homogenization techniques. Nanoparticle technology for drug delivery: CRC Press. 2006:45–76.

    Google Scholar 

  81. Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. CDER Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Products - Quality Considerations. Draft Guidance for Industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/metered-dose-inhaler-mdi-and-dry-powder-inhaler-dpi-drug-products-quality-considerations: FDA; 2018.

  83. Dailey LA, Schmehl T, Gessler T, Wittmar M, Grimminger F, Seeger W, et al. Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. J Control Release. 2003;86(1):131–44.

    Article  CAS  PubMed  Google Scholar 

  84. Pritchard JN. Industry guidance for the selection of a delivery system for the development of novel respiratory products. Expert Opin Drug Deliv. 2015;12(11):1755–65.

    Article  CAS  PubMed  Google Scholar 

  85. Fernández Fernández E, Santos-Carballal B, de Santi C, Ramsey JM, MacLoughlin R, Cryan S-A, et al. Biopolymer-based nanoparticles for cystic fibrosis lung gene therapy studies. Materials. 2018;11(1):122.

    Article  CAS  PubMed Central  Google Scholar 

  86. Graczyk H, Bryan LC, Lewinski N, Suarez G, Coullerez G, Bowen P, et al. Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs). J Aerosol Med Pulm Drug Deliv. 2015;28(1):43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beck-Broichsitter M, Kleimann P, Schmehl T, Betz T, Bakowsky U, Kissel T, et al. Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers. Eur J Pharm Biopharm. 2012;82(2):272–80.

    Article  CAS  PubMed  Google Scholar 

  88. Najlah M, Vali A, Taylor M, Arafat BT, Ahmed W, Phoenix DA, et al. A study of the effects of sodium halides on the performance of air-jet and vibrating-mesh nebulizers. Int J Pharm. 2013;456(2):520–7.

    Article  CAS  PubMed  Google Scholar 

  89. Sawicki GS, Goldman DP, Chan W, Casey A, Greenberg J, Romley JA. Patient preference for treatment administration in cystic fibrosis. Am J Pharm. 2015;7(4):174–81.

    Google Scholar 

  90. CDRH Reviewer Guidance for Nebulisaers, Metred Dose Inhalers, Spacers and Actuators FDA; 1993. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reviewer-guidance-nebulizers-metered-dose-inhalers-spacers-and-actuators.

  91. Hibbitts A, O'mahony A, Forde E, Nolan L, Ogier J, Desgranges S, et al. Early-stage development of novel cyclodextrin-siRNA nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells. J Aerosol Med Pulm Drug Deliv. 2014;27(6):466–77.

    Article  CAS  PubMed  Google Scholar 

  92. Ari A, Areabi H, Fink JB. Evaluation of aerosol generator devices at 3 locations in humidified and non-humidified circuits during adult mechanical ventilation. Respir Care. 2010;55(7):837–44.

    PubMed  Google Scholar 

  93. Bennett G, Joyce M, Sweeney L, MacLoughlin R. In vitro determination of the Main effects in the Design of High-Flow Nasal Therapy Systems with respect to aerosol performance. Pulmonary Therapy. 2018:1–14.

    Google Scholar 

  94. Ari A, Fink JB. Differential medical aerosol device and interface selection in patients during spontaneous, conventional mechanical and noninvasive ventilation. J Aerosol Med Pulm Drug Deliv. 2016;29(2):95–106.

    Article  PubMed  Google Scholar 

  95. Dubus JC, Vecellio L, De Monte M, Fink JB, Grimbert D, Montharu J, et al. Aerosol deposition in neonatal ventilation. Pediatr Res. 2005;58(1):10.

    Article  PubMed  Google Scholar 

  96. Dugernier J, Reychler G, Wittebole X, Roeseler J, Depoortere V, Sottiaux T, et al. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study. Ann Intensive Care. 2016;6(1):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. MacLoughlin R, Telfer C, Clark A, Fink J. Aerosol: a novel vehicle for pharmacotherapy in neonates. Curr Pharm Des. 2017;23(38):5928–34.

    Article  CAS  PubMed  Google Scholar 

  98. Réminiac F, Vecellio L, Loughlin RM, Le Pennec D, Cabrera M, Vourc'h NH, et al. Nasal high flow nebulization in infants and toddlers: an in vitro and in vivo scintigraphic study. Pediatr Pulmonol. 2017;52(3):337–44.

    Article  PubMed  Google Scholar 

  99. Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006;23(7):1482–90.

    Article  CAS  PubMed  Google Scholar 

  100. Salomon JJ, Muchitsch VE, Gausterer JC, Schwagerus E, Huwer H, Daum N, et al. The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharm. 2014;11(3):995–1006.

    Article  CAS  PubMed  Google Scholar 

  101. Johnson LG, Dickman KG, Moore KL, Mandel LJ, Boucher RC. Enhanced Na+ transport in an air-liquid interface culture system. Am J Phys. 1993;264(6 Pt 1):L560–5.

    CAS  Google Scholar 

  102. Tsuchiya S, Gota Y, Okumura H, Nakae S, Konno T, Tada K, et al. Induction of maturation in cultured human Monocytic leukemia cells by a Phorbol Diester. Cancer Res. 1982;42(4):1530–6.

    CAS  PubMed  Google Scholar 

  103. Terpstra GK, De Weger RA, Wassink GA, Kreuknit J, Huidekoper HJ. Changes in alveolar macrophage enzyme content and activity in smokers and patients with chronic obstructive lung disease. Int J Clin Pharmacol Res. 1987;7(4):273–7.

    CAS  PubMed  Google Scholar 

  104. Rothen-Rutishauser BM, Kiama SG, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol. 2005;32(4):281–9.

    Article  CAS  PubMed  Google Scholar 

  105. Franzdóttir SR, Axelsson IT, Arason AJ, Baldursson Ó, Gudjonsson T, Magnusson MK. Airway branching morphogenesis in three dimensional culture. Respir Res. 2010;11(1):162.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gill BJ, Gibbons DL, Roudsari LC, Saik JE, Rizvi ZH, Roybal JD, et al. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 2012;72(22):6013–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. O'Leary C, Cavanagh B, Unger RE, Kirkpatrick CJ, O'Dea S, O'Brien FJ, et al. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold. Biomaterials. 2016;85:111–27.

    Article  CAS  PubMed  Google Scholar 

  108. Huh D, Hamilton GA, Ingber DE. From three-dimensional cell culture to organs-on-chips. Trends Cell Biol. 2011;21(12):745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, et al. Microfabrication of human organs-on-chips. Nat Protoc. 2013;8:2135.

    Article  CAS  PubMed  Google Scholar 

  110. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a Chip. Science. 2010;328(5986):1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab Chip. 2012;12(12):2156–64.

    Article  CAS  PubMed  Google Scholar 

  112. Huh D. A human breathing lung-on-a-Chip. Ann Am Thorac Soc. 2015;12(Suppl 1):S42–S4.

    Article  PubMed  Google Scholar 

  113. Nassiri Koopaei N, Abdollahi M. Opportunities and obstacles to the development of nanopharmaceuticals for human use. Daru. 2016;24(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Li W, Yang Y, Wang C, Liu Z, Zhang X, An F, et al. Carrier-free, functionalized drug nanoparticles for targeted drug delivery. Chem Commun. 2012;48(65):8120–2.

    Article  CAS  Google Scholar 

  115. Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29(1):196–212.

    Article  CAS  PubMed  Google Scholar 

  116. Fattal E, Tsapis N. Nanomedicine technology: current achievements and new trends. Clinical and Translational Imaging. 2014;2(1):77–87.

    Article  Google Scholar 

  117. Haque S, Whittaker MR, McIntosh MP, Pouton CW, Kaminskas LM. Disposition and safety of inhaled biodegradable nanomedicines: opportunities and challenges. Nanomedicine. 2016;12(6):1703–24.

    Article  CAS  PubMed  Google Scholar 

  118. Marasini N, Haque S, Kaminskas LM. Polymer-drug conjugates as inhalable drug delivery systems: a review. Curr Opin Colloid Interface Sci. 2017;31:18–29.

    Article  CAS  Google Scholar 

  119. Hayashi Y. Designing in vitro assay systems for hazard characterization. Basic strategies and related technical issues. Exp Toxicol Pathol. 2005;57:227–32.

    Article  CAS  PubMed  Google Scholar 

  120. Constant S, Huang S, Wiszniewski L, editors. An in vitro testing strategy for the development of novel inhaled therapeutics using human 3D airway epithelium model (Mucilairâ„¢). J Aerosol Med Pulm Drug Deliv; 2013.: Mary Ann Liebert, Inc..

    Google Scholar 

  121. Fytianos K, Drasler B, Blank F, von Garnier C, Seydoux E, Rodriguez-Lorenzo L, et al. Current in vitro approaches to assess nanoparticle interactions with lung cells. Nanomedicine (Lond). 2016;11(18):2457–69.

    Article  CAS  Google Scholar 

  122. Grenha A, Grainger CI, Dailey LA, Seijo B, Martin GP, Remuñán-López C, et al. Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur J Pharm Sci. 2007;31(2):73–84.

    Article  CAS  PubMed  Google Scholar 

  123. Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm. 2009;72(2):370–7.

    Article  CAS  PubMed  Google Scholar 

  124. Jakubowski W, Bartosz G. 2, 7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int. 2000;24(10):757–60.

    Article  CAS  PubMed  Google Scholar 

  125. Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, et al. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 2015;9(sup1):13–24.

    Article  CAS  PubMed  Google Scholar 

  126. Poh TY, Ali N, Mac Aogain M, Kathawala MH, Setyawati MI, Ng KW, et al. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol. 2018;15(1):46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Piret JP, Bondarenko OM, Boyles MSP, Himly M, Ribeiro AR, Benetti F, et al. Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. Arch Toxicol. 2017;91(6):2315–30.

    Article  CAS  PubMed  Google Scholar 

  128. Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, et al. Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology. 2011;287(1–3):99–104.

    Article  CAS  PubMed  Google Scholar 

  129. Mottas I, Milosevic A, Petri-Fink A, Rothen-Rutishauser B, Bourquin C. A rapid screening method to evaluate the impact of nanoparticles on macrophages. Nanoscale. 2017;9(7):2492–504.

    Article  CAS  PubMed  Google Scholar 

  130. Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, et al. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano. 2014;8(3):2562–74.

    Article  CAS  PubMed  Google Scholar 

  131. Goldberg AM, Frazier JM, Brusick D, Dickens MS, Flint O, Gettings SD, et al. Framework for validation and implementation of in vitro toxicity tests. In Vitro Cellular & Developmental Biology-Animal. 1993;29(9):688–92.

    Article  Google Scholar 

  132. Accomasso L, Cristallini C, Giachino C. Risk assessment and risk minimization in Nanomedicine: a need for predictive, alternative, and 3Rs strategies. Front Pharmacol. 2018;9:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nakane H. Translocation of particles deposited in the respiratory system: a systematic review and statistical analysis. Environ Health Prev Med. 2012;17(4):263.

    Article  PubMed  Google Scholar 

  134. Ryan GM, Bischof RJ, Enkhbaatar P, McLeod VM, Chan LJ, Jones SA, et al. A comparison of the pharmacokinetics and pulmonary lymphatic exposure of a generation 4 PEGylated dendrimer following intravenous and aerosol administration to rats and sheep. Pharm Res. 2016;33(2):510–25.

    Article  CAS  PubMed  Google Scholar 

  135. Zolnik BS, Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev. 2009;61(6):422–7.

    Article  CAS  PubMed  Google Scholar 

  136. Tseng C-L, Wu SY-H, Wang W-H, Peng C-L, Lin F-H, Lin C-C, et al. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials. 2008;29(20):3014–22.

    Article  CAS  PubMed  Google Scholar 

  137. Singh RP, Ramarao P. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles. Toxicol Sci. 2013;136(1):131–43.

    Article  CAS  PubMed  Google Scholar 

  138. Diot P, Palmer LB, Smaldone A, DeCEelieGermana J, Grimson R, Maldone GC. RhDNase I aerosol deposition and related factors in cystic fibrosis. Am J Respir Crit Care Med. 1997;156(5):1662–8.

    Article  CAS  PubMed  Google Scholar 

  139. Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1(4):315–20.

    Article  CAS  PubMed  Google Scholar 

  140. Cryan S-A, Sivadas N, Garcia-Contreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv Drug Deliv Rev. 2007;59(11):1133–51.

    Article  CAS  PubMed  Google Scholar 

  141. Hofmann W, Asgharian B, Bergmann R, Anjilvel S, Miller FJ. The effect of heterogeneity of lung structure on particle deposition in the rat lung. Toxicol Sci. 2000;53(2):430–7.

    Article  CAS  PubMed  Google Scholar 

  142. Miller F, Mercer R, Crapo J. Lower respiratory tract structure of laboratory animals and humans: dosimetry implications. Aerosol Sci Technol. 1993;18(3):257–71.

    Article  CAS  Google Scholar 

  143. Black KC, Ibricevic A, Gunsten SP, Flores JA, Gustafson TP, Raymond JE, et al. In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Cerenkov imaging. Biomaterials. 2016;98:53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC, Schuster BS, et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv. 2017;3(4)

    Google Scholar 

  145. Carlon M, Toelen J, Van der Perren A, Vandenberghe LH, Reumers V, Sbragia L, et al. Efficient gene transfer into the mouse lung by fetal Intratracheal injection of rAAV2/6.2. Mol Ther. 2010;18(12):2130–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kawabata A, Baoum A, Ohta N, Jacquez S, Seo G-M, Berkland C, et al. Intratracheal Administration of a Nanoparticle-Based Therapy with the angiotensin II type 2 receptor gene attenuates lung Cancer growth. Cancer Res. 2012;72(8):2057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Galindo-Filho VC, Ramos ME, Rattes CS, Barbosa AK, Brandão DC, Brandão SCS, et al. Radioaerosol pulmonary deposition using mesh and jet nebulizers during noninvasive ventilation in healthy subjects. Respir Care. 2015;60(9):1238–46.

    Article  PubMed  Google Scholar 

  148. Weers J, Metzheiser B, Taylor G, Warren S, Meers P, Perkins WR. A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv. 2009;22(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  149. Bhavna, Ahmad FJ, Mittal G, Jain GK, Malhotra G, Khar RK, et al. Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm. 2009;71(2):282–91.

    Article  CAS  PubMed  Google Scholar 

  150. Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. Nanomedicine. 2016;12(8):2415–27.

    Article  CAS  PubMed  Google Scholar 

  151. Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent Reentrainment onto airways epithelium. Environ Health Perspect. 2007;115(5):728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nowak N, Kakade PP, Annapragada AV. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann Biomed Eng. 2003;31(4):374–90.

    Article  PubMed  Google Scholar 

  153. Xi J, Yang T, Talaat K, Wen T, Zhang Y, Klozik S, et al. Visualization of local deposition of nebulized aerosols in a human upper respiratory tract model. J Vis. 2018;21(2):225–37.

    Article  Google Scholar 

  154. Rösslein M, Liptrott NJ, Owen A, Boisseau P, Wick P, Herrmann IK. Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology. 2017;11(2):147–9.

    Article  PubMed  Google Scholar 

  155. Stark WJ. Nanoparticles in biological systems. Angew Chem Int Ed. 2011;50(6):1242–58.

    Article  CAS  Google Scholar 

  156. Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M. Different biokinetics of nanomedicines linking to their toxicity; an overview. BioMed Central. 2013;

    Google Scholar 

  157. Robinson RLM, Lynch I, Peijnenburg W, Rumble J, Klaessig F, Marquardt C, et al. How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale. 2016;8(19):9919–43.

    Article  CAS  Google Scholar 

  158. Bawa R, Barenholz Y, Owen A. The challenge of regulating Nanomedicine: key issues. Nanomedicines. 2016:290–314.

    Google Scholar 

  159. Berkner S, Schwirn K, Voelker D. Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environ Toxicol Chem. 2016;35(4):780–7.

    Article  CAS  PubMed  Google Scholar 

  160. FDA. Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology. 2014. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology.

  161. Standard for Respiratory Therapy Equipment EN 13544–1 2009. https://standards.cen.eu/.

  162. CHMP Guideline on the Pharmaceutical Quality of Inhalation and Nasal Products. 2006. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-pharmaceutical-quality-inhalation-nasal-products_en.pdf.

  163. Ph. Eur. Preparations for nebulisation: Characterisation. https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-9th-edition.

  164. USP. Products for nebulization: Characterization. https://www.usp.org/.

  165. USP. Orally Inhaled and Nasal Products. https://www.usp.org/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally-Ann Cryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramsey, J.M. et al. (2020). Respiratory Drug/Vaccine Delivery Using Nanoparticles. In: Muttil, P., Kunda, N. (eds) Mucosal Delivery of Drugs and Biologics in Nanoparticles. AAPS Advances in the Pharmaceutical Sciences Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-35910-2_6

Download citation

Publish with us

Policies and ethics