Skip to main content

The Sociobiology of Brain Tumors

  • Chapter
  • First Online:
Book cover Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1225))

Abstract

Brain tumors are complex cellular ecosystems, composed of populations of both neoplastic and non-neoplastic cell types. While the contributions of the cancer cells in low-grade and high-grade gliomas have been extensively studied, there is comparatively less known about the contributions of the non-neoplastic cells in these tumors. As such, a large proportion of the non-neoplastic cells in gliomas are resident brain microglia, infiltrating circulating macrophages, and T lymphocytes. These immune system-like stromal cells are recruited into the evolving tumor through the elaboration of chemokines, and are reprogrammed to adopt new cellular identities critical for glioma formation, maintenance, and progression. In this manner, these populations of tumor-associated microglia and macrophages produce growth factors that support gliomagenesis and continued tumor growth. As we begin to characterize these immune cell contributions, future therapies might emerge as adjuvant approaches to glioma treatment.

Biological diversity is the key to the maintenance of the world as we know it. Life in a local site struck down by a passing storm springs back quickly: opportunistic species rush in to fill the spaces. They entrain the succession that circles back to something resembling the original state of the environment.

Edward O. Wilson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masui K, Cavenee WK, Mischel PS (2016) Cancer metabolism as a central driving force of glioma pathogenesis. Brain Tumor Pathol 33(3):161–168

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K et al (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26(2):288–300

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Buhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F et al (2019) The senescence-associated secretory phenotype mediates oncogene-induced senescence in pediatric pilocytic astrocytoma. Clin Cancer Res 25(6):1851–1866

    CAS  PubMed  Google Scholar 

  5. Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z et al (2011) Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet 20(16):3213–3226

    CAS  PubMed  Google Scholar 

  6. Larribere L, Wu H, Novak D, Galach M, Bernhardt M, Orouji E et al (2015) NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell Melanoma Res 28(4):407–416

    CAS  PubMed  Google Scholar 

  7. Raabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G et al (2011) BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 17(11):3590–3599

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR, Gutmann DH (2003) Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res 63(24):8573–8577

    CAS  PubMed  Google Scholar 

  9. Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22(14):5100–5113

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen R, Keoni C, Waker CA, Lober RM, Chen YH, Gutmann DH (2019) KIAA1549-BRAF expression establishes a permissive tumor microenvironment through NFkappaB-mediated CCL2 production. Neoplasia 21(1):52–60

    CAS  PubMed  Google Scholar 

  11. Kaul A, Chen YH, Emnett RJ, Dahiya S, Gutmann DH (2012) Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes Dev 26(23):2561–2566

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaul A, Chen YH, Emnett RJ, Gianino SM, Gutmann DH (2013) Conditional KIAA1549:BRAF mice reveal brain region- and cell type-specific effects. Genesis 51(10):708–716

    CAS  PubMed  Google Scholar 

  13. Lee DY, Gianino SM, Gutmann DH (2012) Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell 22(1):131–138

    PubMed  PubMed Central  Google Scholar 

  14. Lee DY, Yeh TH, Emnett RJ, White CR, Gutmann DH (2010) Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev 24(20):2317–2329

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ozawa PM, Ariza CB, Ishibashi CM, Fujita TC, Banin-Hirata BK, Oda JM, Watanabe MA (2016) Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma. Int J Cancer 138(1):10–13

    CAS  PubMed  Google Scholar 

  16. Wick W, Platten M, Wick A, Hertenstein A, Radbruch A, Bendszus M, Winkler F (2016) Current status and future directions of anti-angiogenic therapy for gliomas. Neuro-Oncology 18(3):315–328

    CAS  PubMed  Google Scholar 

  17. Simmons GW, Pong WW, Emnett RJ, White CR, Gianino SM, Rodriguez FJ, Gutmann DH (2011) Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J Neuropathol Exp Neurol 70(1):51–62

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hammond TR, Robinton D, Stevens B (2018) Microglia and the brain: complementary partners in development and disease. Annu Rev Cell Dev Biol 34:523–544

    CAS  PubMed  Google Scholar 

  19. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242

    CAS  PubMed  Google Scholar 

  20. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19(1):20–27

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027

    CAS  PubMed  Google Scholar 

  22. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW et al (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77(9):2266–2278

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pong WW, Higer SB, Gianino SM, Emnett RJ, Gutmann DH (2013) Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann Neurol 73(2):303–308

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo X, Pan Y, Gutmann DH (2019) Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro-Oncology 21(10):1250–1262

    Google Scholar 

  27. Pan Y, Xiong M, Chen R, Ma Y, Corman C, Maricos M et al (2018) Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev 32(7–8):491–496

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, Rasmussen RD et al (2015) Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget 6(17):15077–15094

    PubMed  PubMed Central  Google Scholar 

  29. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54(3):388–392

    CAS  PubMed  Google Scholar 

  30. Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, Hanke M et al (2017) Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev 31(8):774–786

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42–56.e46

    PubMed  PubMed Central  Google Scholar 

  32. Wood MD, Mukherjee J, Pieper RO (2018) Neurofibromin knockdown in glioma cell lines is associated with changes in cytokine and chemokine secretion in vitro. Sci Rep 8(1):5805

    PubMed  PubMed Central  Google Scholar 

  33. Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF et al (2016) Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep 17(9):2445–2459

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu F, Dzaye O, Hahn A, Yu Y, Scavetta RJ, Dittmar G et al (2015) Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro-Oncology 17(2):200–210

    CAS  PubMed  Google Scholar 

  35. Miyauchi JT, Caponegro MD, Chen D, Choi MK, Li M, Tsirka SE (2018) Deletion of Neuropilin 1 from microglia or bone marrow-derived macrophages slows glioma progression. Cancer Res 78(3):685–694

    CAS  PubMed  Google Scholar 

  36. Szulzewsky F, Schwendinger N, Guneykaya D, Cimino PJ, Hambardzumyan D, Synowitz M et al (2018) Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro-Oncology 20(3):355–366

    CAS  PubMed  Google Scholar 

  37. Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A et al (2017) Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 18(1):234

    PubMed  PubMed Central  Google Scholar 

  38. Miyauchi JT, Chen D, Choi M, Nissen JC, Shroyer KR, Djordevic S et al (2016) Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget 7(9):9801–9814

    PubMed  PubMed Central  Google Scholar 

  39. Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018

    PubMed  PubMed Central  Google Scholar 

  40. Daginakatte GC, Gianino SM, Zhao NW, Parsadanian AS, Gutmann DH (2008) Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res 68(24):10358–10366

    CAS  PubMed  Google Scholar 

  41. Daginakatte GC, Gutmann DH (2007) Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16(9):1098–1112

    CAS  PubMed  Google Scholar 

  42. Solga AC, Pong WW, Kim KY, Cimino PJ, Toonen JA, Walker J et al (2015) RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia 17(10):776–788

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Louveau A, Harris TH, Kipnis J (2015) Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36(10):569–577

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ellwardt E, Walsh JT, Kipnis J, Zipp F (2016) Understanding the role of T cells in CNS homeostasis. Trends Immunol 37(2):154–165

    CAS  PubMed  Google Scholar 

  45. Filiano AJ, Gadani SP, Kipnis J (2017) How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci 18(6):375–384

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE et al (2018) CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 21(10):1380–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  47. D’Angelo F, Ceccarelli M, Tala, Garofano L, Zhang J, Frattini V et al (2019) The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat Med 25(1):176–187

    PubMed  Google Scholar 

  48. Pan Y, Smithson LJ, Ma Y, Hambardzumyan D, Gutmann DH (2017) Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival. Oncotarget 8(20):32977–32989

    PubMed  PubMed Central  Google Scholar 

  49. Han W, Umekawa T, Zhou K, Zhang XM, Ohshima M, Dominguez CA et al (2016) Cranial irradiation induces transient microglia accumulation, followed by long-lasting inflammation and loss of microglia. Oncotarget 7(50):82305–82323

    PubMed  PubMed Central  Google Scholar 

  50. Kalm M, Lannering B, Bjork-Eriksson T, Blomgren K (2009) Irradiation-induced loss of microglia in the young brain. J Neuroimmunol 206(1–2):70–75

    CAS  PubMed  Google Scholar 

  51. Li MD, Burns TC, Kumar S, Morgan AA, Sloan SA, Palmer TD (2015) Aging-like changes in the transcriptome of irradiated microglia. Glia 63(5):754–767

    PubMed  PubMed Central  Google Scholar 

  52. Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN et al (2019) Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176(1–2):43–55.e13

    CAS  PubMed  Google Scholar 

  53. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The author was funded by a Research Program Award grant from the National Institutes of Health (1-R35-NS07211-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Gutmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutmann, D.H. (2020). The Sociobiology of Brain Tumors. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-35727-6_8

Download citation

Publish with us

Policies and ethics