Skip to main content

Treatment and Intervention Approaches for the Improvement of Language Abilities in Neurodegenerative Diseases

  • Chapter
  • First Online:
  • 722 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

This chapter discusses the current state of treatment and intervention approaches to language impairments resulting from neurodegenerative conditions such as Alzheimer’s disease (AD), mild cognitive impairment (MCI), and primary progressive aphasia (PPA). Traditionally, language therapy has focused on improving performance after stroke, while linguistic difficulties resulting from various neurodegenerative conditions have largely been left untreated. Despite the progressive nature of these conditions, current research has shown that language impairments associated with them are responsive to therapy, indicating the potential for neuroplasticity even in neurodegeneration. In this chapter, we present and discuss behavioral intervention methods targeting the word as well as the sentence level of impairment in the aforementioned conditions, as well as neuromodulatory techniques (repetitive transcranial magnetic stimulation, transcranial direct current stimulation) and their application in the domain of language impairments. Efficacy of treatment varies depending on the condition but also on the technique: therapy gains seem to be higher when it comes to AD as compared to MCI and when it comes to agrammatic (PPA-G) or logopenic PPA (PPA-L) as compared to semantic PPA (PPA-S). Moreover, neuromodulatory techniques may have longer-lasting effects relative to behavioral treatment, while combined interventions (behavioral and neuromodulatory) have produced more promising results, maximizing the efficacy of the intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Low-frequency (1–4 Hz) rTMS has inhibitory effects, while high-frequency stimulation (>5 Hz) causes excitatory effects; similarly, cathodal tDCS induces neural hyperpolarization reducing the responsiveness of the neurons leading to inhibition of performance, while anodal induces neural depolarization, increasing neurons’ excitability (Pini et al., 2019).

  2. 2.

    The process of creating a lexical item from a verbal basis. For instance, teach > teacher, play > playing, understand > understandable.

Abbreviations

(r)TMS:

(Repetitive) transcranial magnetic stimulation

AD:

Alzheimer’s disease

CCT:

Computerized cognitive training

DLPFC:

Dorsolateral prefrontal cortex

EF:

Executive functions

FTD:

Frontotemporal dementia

LH:

Left hemisphere

MCI:

Mild cognitive impairment

PPA:

Primary progressive aphasia

PPA-G:

Agrammatic PPA

PPA-L:

Logopenic PPA

PPA-S:

Semantic PPA

RH:

Right hemisphere

tDCS:

Transcranial direct current stimulation

References

  • Abel, S., Weiller, C., Huber, W., Willmes, K., & Specht, K. (2015). Therapy-induced brain reorganization patterns in aphasia. Brain, 138, 1097–1112.

    Google Scholar 

  • Adlam, A. L. R., Patterson, K., Rogers, T. T., Nestor, P. J., Salmond, C. H., Acosta-Cabronero, J., … Hodges, J. R. (2006). Semantic dementia and fluent primary progressive aphasia: Two sides of the same coin? Brain, 129, 3066–3080.

    Google Scholar 

  • Ahmed, M. A., Darwish, E. S., Khedr, E. M., El Serogy, Y. M., & Ali, A. M. (2012). Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. Journal of Neurology, 259(1), 83–92.

    Google Scholar 

  • Alegret, M., Pereto, M., Perez, A., Valero, S., Espinosa, A., Ortega, G., … Boada, M. (2018). The role of verb fluency in the detection of early cognitive impairment in Alzheimer’s disease. Journal of Alzheimer’s Disease, 62(2), 611–619.

    Google Scholar 

  • Albert, M., Moss, M. B., Blacker, D., Tanzi, R., & McArdle, J. J. (2007). Longitudinal change in cognitive performance among individuals with mild cognitive impairment. Neuropsychology, 21, 158–169.

    Google Scholar 

  • Altmann, L., Kempler, D., & Andersen, E. (2001). Speech errors in Alzheimer’s disease: Reevaluating morphosyntactic preservation. Journal of Speech, Language, & Hearing Research, 44, 1069–1082.

    Google Scholar 

  • Antczak, J., Kowalska, K., Klimkowicz-Mrowiec, A., Wach, B., Kasprzyk, K., Banach, M., … Słowik, A. (2018). Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: An open-label pilot study. Neuropsychiatric Disease & Treatment, 14, 749–755.

    Google Scholar 

  • Ash, S., McMillan, C., Gunawardena, D., Avants, B., Morgan, B., Khan, A., & Grossman, M. (2010). Speech errors in progressive non-fluent aphasia. Brain & language, 113(1), 13–20.

    Google Scholar 

  • Auclair-Ouellet, N., Fossard, M., Houde, M., Laforce, R., & Macoir, J. (2016). Production of morphologically derived words in the semantic variant of primary progressive aphasia: Preserved decomposition and composition but impaired validation. Neurocase, 22(2), 170–178.

    Google Scholar 

  • Baddeley, A. (1996). Exploring the Central Executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5–28.

    Google Scholar 

  • Baker, J. M., Rorden, C., & Fridriksson, J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236.

    Google Scholar 

  • Barnes, D., Yaffe, K., Belfor, N., Jagust, W. J., DeCarli, C., Reed, B. R., & Kramer, J. H. (2009). Computer-based cognitive training for mild cognitive impairment: Results from a pilot randomized, controlled trial. Alzheimer’s Disease & Associated Disorders, 23(3), 205–210.

    Google Scholar 

  • Barwood, C. H., Murdoch, B. E., Whelan, B. M., Lloyd, D., Riek, S., O’ Sullivan, J. D., … Wong, A. (2011). Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. European Journal of Neurology, 18, 935–943.

    Google Scholar 

  • Beeson, P. M., King, R. M., Bonakdarpour, B., Henry, M. L., Cho, H., & Rapcsak, S. Z. (2011). Positive effects of language treatment for the logopenic variant of primary progressive aphasia. Journal of Molecular Neuroscience, 45, 724–736.

    Google Scholar 

  • Benedet, M., Patterson, K., Gomez-Pastor, I., & Luisa-Garcia de la Rocha, M. (2006). “Non-semantic” aspects of language in semantic dementia: As normal as they’re said to be? Neurocase, 12, 15–26.

    Google Scholar 

  • Berthier, M. L., & Pulvermüller, F. (2011). Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nature Reviews in Neurology, 7(2), 86–97.

    Google Scholar 

  • Bier, N., Macoir, J., Gagnon, L., Desrosiers, J., Van der Linden, M., & Louveaux, S. (2009). Known, lost, and recovered: Efficacy of formal-semantic therapy and spaced retrieval method in a patient with semantic dementia. Aphasiology, 23(2), 210–235.

    Google Scholar 

  • Bier, N., Macoir, J., Joubert, S., Bottari, C., Chayer, C., Pigot, H., … SemAssist Team. (2011). Cooking “Shrimp a la Creole”: A pilot study of an ecological rehabilitation in semantic dementia. Neuropsychological Rehabilitation, 21(4), 455–483.

    Google Scholar 

  • Bier, N., Brambati, S., Macoir, J., Paquette, G., Schmitz, X., Belleville, S., … Joubert, S. (2015). Relying on procedural memory to enhance independence in daily living activities: Smartphone use in a case of semantic dementia. Neuropsychological Rehabilitation, 25, 913–935.

    Google Scholar 

  • Bilenko, N. Y., Grindrod, C. M., Myers, E. B., & Blumstein, S. E. (2009). Neural correlates of semantic competition during processing of ambiguous words. Journal of Cognitive Neuroscience, 21, 960–975.

    Google Scholar 

  • Boxer, A., Knopman, D., Kaufer, D., Grossman, M., Onyike, C., … Miller, B. L. (2013). Memantine in patients with frontotemporal lobar degeneration: A multicenter, randomized, double-blind, placebo-controlled trial. The Lancet Neurology, 12, 149–156.

    Google Scholar 

  • Braaten, A. J., Parsons, T. D., McCue, R., Sellers, A., & Burns, W. J. (2006). Neurocognitive differential diagnosis of dementing diseases: Alzheimer’s dementia, vascular dementia, frontotemporal dementia and major depressive disorder. International Journal of Neuroscience, 116(11), 1271–1293.

    Google Scholar 

  • Brown-Schmidt, S. (2009). The role of executive function in perspective taking during online language comprehension. Psychonomic Bulletin Review, 16, 893–900.

    Google Scholar 

  • Cadorio, I., Lousada, M., Martins, P., & Figueiredo, D. (2017). Generalization and maintenance of treatment gains in primary progressive aphasia (PPA): A systematic review. International Journal of Communication Disorders, 52(5), 543–560.

    Google Scholar 

  • Carthery-Goulart, M. T., Silveira, A. C., Machado, T. H., Mansur, L. L., Parente, M. A., Senaha, M. L., Brucki, S. M., & Nitrini, R. (2013). Nonpharmacological interventions for cognitive impairments following primary progressive aphasia. A systematic review of the literature. Dementia & Neuropsychologia, 7, 122–131.

    Google Scholar 

  • Cartwright, J., & Elliott, K. (2009). Promoting strategic television viewing in the context of progressive language impairment. Aphasiology, 23(2), 266–285.

    Google Scholar 

  • Cipriani, G., Bianchetti, A., & Trabucchi, M. (2006). Outcomes of a computer-based cognitive rehabilitation program on Alzheimer’s disease patients compared with those on patients affected by mild cognitive impairment. Archives Gerontology & Geriatrics, 43(3), 327–335.

    Google Scholar 

  • Cotelli, M., Manenti, R., Cappa, S. F., Geroldi, C., Zanetti, O., Rossini, P. M., et al. (2006). Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Archives of Neurology, 63(11), 1602–1604.

    Google Scholar 

  • Cotelli, M., Manenti, R., Cappa, S. F., Zanetti, O., & Miniussi, C. (2008). Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. European Journal of Neurology, 15(12), 1286–1292.

    Google Scholar 

  • Cotelli, M., Calabria, M., Manenti, R., Rosini, S., Zanetti, O., Cappa, S. F., et al. (2011). Improved language performance in Alzheimer disease following brain stimulation. Journal of Neurology, Neurosurgery, & Psychiatry, 82(7), 794–797.

    Google Scholar 

  • Cotelli, M., Calabria, M., Manenti, R., et al. (2012). Brain stimulation improves associative memory in an individual with amnestic mild cognitive impairment. Neurocase, 18, 217–223.

    Google Scholar 

  • Cotelli, M., Manenti, R., Petesi, M., Brambilla, M., Cosseddu, M., Zanetti, O., et al. (2014). Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. Journal of Alzheimer’s Disease, 39(4), 799–808.

    Google Scholar 

  • Copland, D. A., Sefe, G., Ashley, J., Hudson, C., & Chenery, H. J. (2009). Impaired semantic inhibition during lexical ambiguity repetition in Parkinson’s disease. Cortex, 45, 943–949.

    Google Scholar 

  • Crinion, J. (2016). Transcranial direct current stimulation as a novel method for enhancing aphasia treatment effects. European Psychologist, 21, 65–77.

    Google Scholar 

  • Croot, K., Nickels, L., Laurence, F., & Manning, M. (2009). Impairment- and activity/participation-directed interventions in progressive language impairment: Clinical and theoretical issues. Aphasiology, 23, 125–160.

    Google Scholar 

  • Croot, K., Taylor, C., Abel, S., Jones, K., Krein, L., Hameister, I., et al. (2015). Measuring gains in connected speech following treatment for word retrieval: A study with two participants with primary progressive aphasia. Aphasiology, 29(11), 1265–1288.

    Google Scholar 

  • Croot, K., Raiser, T., Taylor-Rubin, C., Ruggero, L., Ackl, N., Wlasich, E., et al. (2019). Lexical retrieval treatment in primary progressive aphasia: An investigation of treatment duration in a heterogeneous case series. Cortex, 115, 133–158.

    Google Scholar 

  • Dadgar, H., Alaghband Rad, J., Khorrami, A., & Soleymani, Z. (2016). A review of the transcranial magnetic stimulation treatment in Autism spectrum disorders. Archives Neuroscience, 3(3), e30362.

    Google Scholar 

  • Decker, D. A., & Heilman, K. M. (2008). Steroid treatment of primary progressive aphasia. Archives Neurology, 65, 1533–1535.

    Google Scholar 

  • Demetriou, E., & Holtzer, R. (2017). Mild cognitive impairments moderate the effect of time on verbal fluency performance. Journal of the International Neuropsychological Society, 23(1), 44–55.

    Google Scholar 

  • D’Esposito, M., & Postle, B. R. (1999). The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia, 37(11), 1303–1315.

    Google Scholar 

  • De Jager, C. A., Hogervorst, E., Combrinck, M., & Budge, M. M. (2003). Sensitivity and specificity of neuropsychological tests for mild cognitive impairment, vascular cognitive impairment and Alzheimer’s disease. Psychological Medicine, 33(6), 1039–1050.

    Google Scholar 

  • Dressel, K., Huber, W., Frings, L., Kummerer, D., Saur, D., Mader, I., … Abel, S. (2010). Model-oriented naming therapy in semantic dementia: A single-case fMRI study. Aphasiology, 24, 1537–1558.

    Google Scholar 

  • Drucks, J., Masterson, J., Kopelman, M., Clare, L., Rose, A., & Rai, G. (2006). Is action naming better preserved (than object naming) in Alzheimer’s disease and why should we ask? Brain & Language, 98, 332–340.

    Google Scholar 

  • Duong, A., Whitehead, V., Hanratty, K., & Chertkow, H. (2006). The nature of lexico-semantic processing in deficits in mild cognitive impairment. Neuropsychologia, 44, 1928–1935.

    Google Scholar 

  • Elder, G. J., & Taylor, J. P. (2014). Transcranial magnetic stimulation and transcranial direct current stimulation: Treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimer’s Research & Therapy, 6, 74.

    Google Scholar 

  • Evans, W. S., Quimby, M., Dickey, M. W., & Dickerson, B. C. (2016). Relearning and retaining personally-relevant words using computer-based flashcard software in primary progressive aphasia. Frontiers in Human Neuroscience, 10, 561.

    Google Scholar 

  • Faria, A. V., Crinion, J., Tsapkini, K., Newhart, M., Davis, C., et al. (2013). Patterns of dysgraphia in primary progressive aphasia compared to post-stroke aphasia. Behavioral Neurology, 26, 21–34.

    Google Scholar 

  • Farrajota, L., Maruta, C., Maroco, J., Martins, I. P., Guerreiro, M., & de Mendonca, A. (2012). Speech therapy in primary progressive aphasia: A pilot study. Dementia & Geriatric Cognitive Disorders Extra, 2, 321–331.

    Google Scholar 

  • Fertonani, A., Rosini, S., Cotelli, M., Rossini, P. M., & Miniussi, C. (2010). Naming facilitation induced by transcranial direct current stimulation. Behavioral Brain Research, 208, 311–318.

    Google Scholar 

  • Finocchiaro, C., Maimone, M., Brighina, F., Piccoli, T., Giglia, G., & Fierro, B. (2006). A case study of primary progressive aphasia: Improvement on verbs after rTMS treatment. Neurocase, 12, 317–321.

    Google Scholar 

  • Frattali, C. (2004). An errorless learning approach to treating dysnomia in frontotemporal dementia. Journal of Medical Speech-Language Pathology, 12, 11–24.

    Google Scholar 

  • Fridriksson, J. (2010). Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. Journal of Neuroscience, 30, 11558–11564.

    Google Scholar 

  • Fridriksson, J., Hubbard, H. I., Hudspeth, S. G., Holland, A. L., Bonilha, L., Fromm, D., & Rorden, C. (2012). Speech entrainment enables patients with Broca’s aphasia to produce fluent speech. Brain, 135(Pt 12), 3815–3829.

    Google Scholar 

  • Fridriksson, J., Guo, D., Fillmore, P., Holland, A., & Rorden, C. (2013). Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain, 136, 3451–3460.

    Google Scholar 

  • Gervits, F., Ash, S., Diloyan, M., Morgan, B., Coslett, H., Grossman, M., et al. (2015). Transcranial direct current stimulation for the treatment of primary progressive aphasia. Neurology, 84(Suppl. 14), 212.

    Google Scholar 

  • Gervits, F., Ash, S., Coslett, B., Rascovsky, K., Grossman, M., & Hamilton, R. (2016). Transcranial direct current stimulation for the treatment of primary progressive aphasia: An open-label pilot study. Brain & Language, 162, 35–41.

    Google Scholar 

  • Gill, J., Shah-Basak, P., & Hamilton, R. (2015). It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimulation, 8, 253–259.

    Google Scholar 

  • Gorno-Tempini, M. L., Dronkers, N. F., Rankin, K. P., Ogar, J. M., Phengrasamy, L., Rosen, H. J., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335–346.

    Google Scholar 

  • Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76, 1006–1014.

    Google Scholar 

  • Graham, K. S., Patterson, K., Pratt, K. H., & Hodges, J. R. (1999). Relearning and subsequent forgetting of semantic category exemplars in a case of semantic dementia. Neuropsychology, 13(3), 359–380.

    Google Scholar 

  • Graham, K. S., Patterson, K., Pratt, K. H., & Hodges, J. R. (2001). Can repeated exposure to “forgotten” vocabulary help alleviate word-finding difficulties in semantic dementia? An illustrative case study. Neuropsychological Rehabilitation, 11(3–4), 429–454.

    Google Scholar 

  • Graham, N. (2014). Dysgraphia in primary progressive aphasia: Characterization of impairments and therapy options. Aphasiology, 28(8-9), 1092–1111.

    Google Scholar 

  • Grossman, M. (2010). Primary progressive aphasia: Clinicopathological correlations. Nature Reviews Neurology, 6(2), 88–97.

    Google Scholar 

  • Grossman, M. (2018). Linguistic aspects of primary progressive aphasia. Annual Review of Linguistics, 4, 377–403.

    Google Scholar 

  • Hameister, I., Nickels, L., Abel, S., & Croot, K. (2017). “Do you have mowing the lawn”? Improvements in word retrieval and grammar following constraint-induced language therapy in primary progressive aphasia. Aphasiology, 31(3), 308–331.

    Google Scholar 

  • Hamilton, R. H., Chrysikou, E. G., & Coslett, B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain & Language, 118, 40–50.

    Google Scholar 

  • Harciarek, M., Sitek, E. J., & Kertesz, A. (2014). The patterns of progression in primary progressive aphasia—Implications for assessment and management. Aphasiology, 28(8-9), 964–980.

    Google Scholar 

  • Hattori, Y., Moriwaki, A., & Hori, Y. (1990). Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neuroscience Letters, 116, 320–324.

    Google Scholar 

  • Heiss, W. D., Thiel, A., Kessler, J., & Herholz, K. (2003). Disturbance and recovery of language function: Correlates in PET activation studies. Neuroimage, 20, S42–S49.

    Google Scholar 

  • Henry, M. L., Meese, M. V., Truong, S., Babiak, M. C., Miller, B. L., & Gorno-Tempini, M. L. (2013). Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behavioural Neurology, 26(1– 2), 77–88.

    Google Scholar 

  • Henry, M., Hubbard, I., Grasso, S., Mandelli, M. L., Wilson, S., Sathishkumar, M., … Gorno-Tempini, M. L. (2018). Retraining speech production and fluency in non-fluent/agrammatic primary progressive aphasia. Brain, 141, 1799–1814.

    Google Scholar 

  • Heredia, C. G., Sage, K., Lambon Ralph, M. A., & Berthier, B. L. (2009). Relearning and retention of verbal labels in a case of semantic dementia. Aphasiology, 23(2), 192–209.

    Google Scholar 

  • Hillis, A. E., Tuffiash, E., & Caramazza, A. (2002). Modality-specific deterioration in naming verbs in nonfluent primary progressive aphasia. Journal of Cognitive Neuroscience, 14, 1099–1108.

    Google Scholar 

  • Hillis, A. E., Oh, S., & Ken, L. (2004). Deterioration of naming nouns versus verbs in primary progressive aphasia. Annals of Neurology, 55(2), 268–275.

    Google Scholar 

  • Hillis, A. E., Heidler-Gary, J., Newhart, M., Chang, S., Ken, L., & Bak, T. H. (2006). Naming and comprehension in primary progressive aphasia: The influence of grammatical word class. Aphasiology, 20(02-04), 246–256.

    Google Scholar 

  • Hoffman, P., Jefferies, E., & Lambon Ralph, M. (2010). Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: Convergent neuropsychological and repetitive TMS evidence. Journal of Neuroscience, 30, 15450–15456.

    Google Scholar 

  • Hung, J., Bauer, A., Grossman, M., Hamilton, R., Coslett, H. B., & Reilly, J. (2017). Semantic feature training in combination with transcranial direct current stimulation (tDCS) for progressive anomia. Frontiers in Human Neuroscience, 11, 253.

    Google Scholar 

  • Hupfeld, K. E., & Ketcham, C. J. (2016). Behavioral effects of transcranial direct current stimulation on motor and language planning in minimally verbal children with Autism Spectrum Disorder (ASD): Feasinility, limitations and future directions. Journal of Childhood & Developmental Disorders, 2, 3.

    Google Scholar 

  • Hussey, E., Teubner-Rhodes, S., Dougherty, M., Bunting, M., & Novick, J. (2010). Improving garden-path recovery in healthy adults through cognitive control training. Talk presented at the 16th Annual Conference on Architectures and Mechanisms for Language Processing, York, UK.

    Google Scholar 

  • Hussey, E. K., & Novick, J. M. (2012). The benefits of executive control training and the implications for language use. Frontiers in Psychology, 3, 158.

    Google Scholar 

  • Jefferies, E., Rogers, T. T., Hopper, S., & Lambon Ralph, M. A. (2010). “Pre-semantic” cognition revisited: Critical differences between semantic aphasia and semantic dementia. Neuropsychologia, 48, 248–261.

    Google Scholar 

  • Jefferies, E., Bott, S., Ehsan, S., & Lambon Ralph, M. A. (2011). Phonological learning in semantic dementia. Neuropsychologia, 49, 1208–1218.

    Google Scholar 

  • Johnson, N. A., Rademaker, A., Weintraub, S., Gitelman, D., Wienecke, C., & Mesulam, M. (2010). Pilot trial of memantine in primary progressive aphasia. Alzheimer’s Disease & Associated Disorders, 24, 308.

    Google Scholar 

  • Johnson, M., & Lin, F. (2014). Communication difficulty and relevant interventions in mild cognitive impairment: Implications for neuroplasticity. Topics in Geriatric Rehabilitation, 30(1), 18–34.

    Google Scholar 

  • Jokel, R., Rochon, E., & Leonard, C. (2006). Treating anomia in semantic dementia: Improvement, maintenance, or both? Neuropsychological Rehabilitation, 16(3), 241–256.

    Google Scholar 

  • Jokel, R., Cupit, J., Rochon, E., & Leonard, C. (2009). Relearning lost vocabulary in nonfluent progressive aphasia with MossTalk words. Aphasiology, 23(2), 175–191.

    Google Scholar 

  • Jokel, R., Rochon, E., & Anderson, N. D. (2010). Errorless learning of computer-generated words in a patient with semantic dementia. Neuropsychological Rehabilitation, 20(1), 16–41.

    Google Scholar 

  • Jokel, R., Graham, N. L., Rochon, E., & Leonard, C. (2014). Word retrieval therapies in primary progressive aphasia. Aphasiology, 28, 1038–1068.

    Google Scholar 

  • Kan, I., & Thompson-Schill, S. L. (2004). Selection from perceptual and conceptual representations. Cognitive, Affective and Behavioral Neuroscience, 4, 466–482.

    Google Scholar 

  • Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology. Learning, Memory & Cognition, 26(2), 336–358.

    Google Scholar 

  • Kavé, G., Heinik, J., & Biran, I. (2012). Preserved morphological processing in semantic dementia. Cognitive Neuropsychology, 29(7-8), 550–568.

    Google Scholar 

  • Kavé, G., & Levy, Y. (2003). Morphology in picture descriptions provided by persons with Alzheimer’s disease. Journal of Speech, Language, & Hearing Research, 46, 341–352.

    Google Scholar 

  • Kavé, G., & Dassa, A. (2018). Severity of Alzheimer’s disease and language features in picture descriptions. Aphasiology, 32(1), 27–40.

    Google Scholar 

  • Kavé, G., & Goral, M. (2018). Word retrieval in connected speech in Alzheimer’s disease: A review with meta-analyses. Aphasiology, 32(1), 4–26.

    Google Scholar 

  • Kensinger, E. A., Shearer, D. K., Locascio, J. J., Growdon, J. H., & Corkin, S. (2003). Working memory in mild Alzheimer’s disease and early Parkinson’s disease. Neuropsychology, 17(2), 230–239.

    Google Scholar 

  • Kertesz, A., Morlog, D., Light, M., Blair, M., Davidson, W., Jesso, S., et al. (2008). Galantamine in frontotemporal dementia and primary progressive aphasia. Dementia & Geriatric Cognitive Disorders, 25, 178185.

    Google Scholar 

  • Khanna, M. M., & Boland, J. E. (2010). Children’s use of language context in lexical ambiguity resolution. The Quarterly Journal of Experimental Psychology, 63, 160–193.

    Google Scholar 

  • Kim, M., & Thompson, C. (2004). Verb deficits in Alzheimer’s disease and agrammatism: Implications for lexical organization. Brain & Language, 88(1), 1–20.

    Google Scholar 

  • Kiran, S., Meier, E. L., Kapse, K. J., & Glynn, P. A. (2015). Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Frontiers in Human Neuroscience, 9, 316.

    Google Scholar 

  • Kiran, S., & Thompson, C. (2019). Neuroplasticity of language; networks in aphasia: Advances, updates and future challenges. Frontiers in Neurology, 10, 295.

    Google Scholar 

  • Kordouli, K., Manouilidou, C., Stavrakaki, S., Mamouli, D., & Ioannidis, P. (2018). Compound production in agrammatism: Evidence from stroke-induced and primary progressive aphasia. Journal of Neurolinguistics, 47, 71–90.

    Google Scholar 

  • Krajenbrink, T., Croot, K., Taylor, C., & Nickels, L. (2016). Treatment of spoken and written word retrieval in primary progressive aphasia. Conference abstract: 54th annual academy of aphasia meeting. Frontiers of Psychology. https://doi.org/10.3389/conf.fpsyg.2016.68.00071

  • Kuo, M. F., Paulus, W., & Nitsche, M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage, 85(3), 948–960.

    Google Scholar 

  • Lambon Ralph, M. A., Patterson, K., Graham, N., Dawson, K., & Hodges, J. R. (2003). Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer’s disease: A cross-sectional and longitudinal study of 55 cases. Brain, 126(Pt11), 2350–2362.

    Google Scholar 

  • Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125, 2238–2247.

    Google Scholar 

  • Lindenboom, J., & Weinstein, H. (2004). Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer’s disease and vascular cognitive impairment. European Journal of Pharmacology, 19(1-3), 83–86.

    Google Scholar 

  • Louis, M., Espesser, R., Rey, V., Daffaure, V., Cristo, A. D., & Habib, M. (2001). Intensive training of phonological skills in progressive aphasia: A model of brain plasticity in neurodegenerative disease. Brain & Cognition, 46, 197–201.

    Google Scholar 

  • Machado, T. H., Campanha, A. C., Caramelli, P., & Carthery-Goulart, M. T. (2014). Brief intervention for agrammatism in Primary Progressive Nonfluent Aphasia. Dementia & Neuropsychologia, 8(3), 291–296.

    Google Scholar 

  • Manouilidou, C., & de Almeida, R. (2009). Linguistic canonicity and verb deficits in Alzheimer’s disease. In S. Featherston & S. Winkler (Eds.), The fruits of empirical linguistics, Volume 1: The process (pp. 123–150). Berlin: De Gruyter.

    Google Scholar 

  • Manouilidou, C., de Almeida, R., Schwartz, G., & Nair, N. P. V. (2009). Thematic roles in Alzheimer’s disease: Hierarchy violations in psychological predicates. Journal of Neurolinguistics, 22(2), 167–186.

    Google Scholar 

  • Manouilidou, C., Dolenc, B., Marvin, T., & Pirtošek, Z. (2016a). Processing complex pseudo-words in mild cognitive impairment: The interaction of preserved morphological rule knowledge with compromised cognitive ability. Clinical Linguistics & Phonetics, 30(1), 49–67.

    Google Scholar 

  • Manouilidou, C., Nerantzini, M., Dougherty, B., & Thompson, C. K. (2016b). Processing complex pseudo-words in primary progressive aphasia and agrammatic aphasia. Stem-, Spraak-en Taalpathologie, 21(S01), 14–17.

    Google Scholar 

  • Marcotte, K., & Ansaldo, A. I. (2010). The neural correlates of semantic feature analysis in chronic aphasia: Discordant patterns according to the etiology. Thieme: Seminars in Speech and Language, 31(1), 052–063.

    Google Scholar 

  • Martin, P. I., Naeser, M. A., Ho, M., Doron, K. W., Kurland, J., Kaplan, J., et al. (2009). Overt naming fMRI pre- and post-TMS: Two nonfluent aphasia patients, with and without improved naming post-TMS. Brain & Language, 111, 20–35.

    Google Scholar 

  • Maruta, C., Pereira, T., Madeira, S. C., De Mendonça, A., & Guerreiro, M. (2015). Classification of primary progressive aphasia: Do unsupervised data mining methods support a logopenic variant? Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 16(3-4), 147–159.

    Google Scholar 

  • Masterson, J., Druks, J., Kopelman, M., Clare, L., Garley, C., & Hayes, M. (2007). Selective naming (and comprehension) deficits in Alzheimer’s disease. Cortex, 43, 921–934.

    Google Scholar 

  • Mayberry, E., Sage, K., Ehsan, S., & Lambon Ralph, M. (2011). Relearning in semantic dementia reflects contributions from both medial temporal lobe episodic and degraded neocortical semantic systems: Evidence in support of the complementary learning systems theory. Neuropsychologia, 49, 3591–3598.

    Google Scholar 

  • McNeil, M., Small, S., Masterson, R., & Fossett, T. (1995). Behavioral and pharmacological treatment of lexical-semantic deficits in a single patient with primary progressive aphasia. American Journal of Speech-Language Pathology, 4(4), 76–87.

    Google Scholar 

  • Meinzer, M., & Breitenstein, C. (2008). Functional imaging studies of treatment-induced recovery in chronic aphasia. Aphasiology, 22(12), 1251–1268.

    Google Scholar 

  • Menke, R., Meinzer, M., Kugel, H., Deppe, M., Baumgartner, A., Schiffbauer, H., et al. (2009). Imaging short- and long-term training success in chronic aphasia. BMC Neuroscience, 10, 118.

    Google Scholar 

  • Mesulam, M. M., Wieneke, C., Rogalski, E., Cobia, D., Thompson, C., & Weintraub, S. (2009). Quantitative template for subtyping primary progressive aphasia. Archives of Neurology, 66(12), 1545–1551.

    Google Scholar 

  • Mesulam, M. M., Wieneke, C., Thompson, C., Rogalski, E., & Weintraub, S. (2012). Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain, 135(5), 1537–1553.

    Google Scholar 

  • Mesulam, M. M. (2013). Primary progressive aphasia. A dementia of the language network. Dementia & Neuropsychologia, 7, 29.

    Google Scholar 

  • Mesulam, M. M. (1982). Slowly progressive aphasia without generalized dementia. Annual Neurology, 11, 592–598.

    Google Scholar 

  • Meteyard, L., & Patterson, K. (2009). The relation between content and structure in language production: An analysis of speech errors in semantic dementia. Brain & Language, 110(3), 121–134.

    Google Scholar 

  • Meyer, A., Snider, S., Eckmann, C., & Friedman, R. (2015). Prophylactic treatments for anomia in the logopenic variant of primary progressive aphasia: Cross-language transfer. Aphasiology, 29, 1–20.

    Google Scholar 

  • Meyer, A. M., Tippett, D. C., Turner, R. S., & Friedman, R. B. (2018). Long-term maintenance of anomia treatment effects in primary progressive aphasia. Neuropsychological Rehabilitation, 29(9), 1439–1463.

    Google Scholar 

  • Moriwaki, A. (1991). Polarizing currents increase noradrenaline-elicited accumulation of cyclic AMP in rat cerebral cortex. Brain Research, 544, 248–252.

    Google Scholar 

  • Musso, M., Weiller, C., Kiebel, S., Muller, S. P., Bulau, P., & Rijntjes, M. (1999). Training-induced brain plasticity in aphasia. Brain, 122(Pt 9), 1781–1790.

    Google Scholar 

  • Naeser, M. A., Martin, P. I., Nicholas, M., Baker, E. H., Seekins, H., Helm-Estabrooks, N., et al. (2005). Improved naming after TMS treatments in a chronic, global aphasia patient–case report. Neurocase, 11, 182–193.

    Google Scholar 

  • Newhart, M., Davis, C., Kannan, V., Heidler-Gary, J., Cloutman, L., & Hillis, A. E. (2009). Therapy for naming deficits in two variants of primary progressive aphasia. Aphasiology, 23, 823–834.

    Google Scholar 

  • Norise, C., & Hamilton, R. (2017). Non-invasive brain stimulation in the treatment of post-stroke and neurodegenerative aphasia: Parallels, differences, and lessons learned. Frontiers in Human Neuroscience, 10, 675.

    Google Scholar 

  • Novick, J., Kan, I., Trueswell, J., & Thompson-Schill, S. (2009). A case for conflict across multiple domains: Memory and language impairments following damage to ventrolateral prefrontral cortex. Cognitive Neuropsychology, 26, 527–567.

    Google Scholar 

  • Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Re-examining the role of Broca’s area in sentence comprehension. Cognitive, Affective, and Behavioral Neuroscience, 5(3), 263–281.

    Google Scholar 

  • Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives Neurology, 58(12), 1985–1992.

    Google Scholar 

  • Pini, L., Manenti, R., Cotelli, M., Pizzini, F., Frisoni, G., & Pievani, M. (2019). Non-Invasive brain stimulation in Dementia: A complex network story. Neuro-Degenerative Diseases, 18, 281–301.

    Google Scholar 

  • Pulvermüller, F., Neininger, B., Elbert, T., Mohr, B., Rockstroh, B., Koebbel, P., & Taub, E. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32(7), 1621–1626.

    Google Scholar 

  • Rapp, B., & Glucroft, B. (2009). The benefits and protective effects of behavioral treatment for dysgraphia in a case of primary progressive aphasia. Aphasiology, 23, 236–265.

    Google Scholar 

  • Reed, D. A., Johnson, N. A., Thompson, C., Weintraub, S., & Mesulam, M. M. (2004). A clinical trial of bromocriptine for treatment of primary progressive aphasia. Annals of Neurology, 56, 750.

    Google Scholar 

  • Ren, C. L., Zhang, G. F., Xia, N., Jin, C. H., Zhang, X. H., Hao, J. F., et al. (2014). Effect of low-frequency rTMS on aphasia in stroke patients: A meta-analysis of randomized controlled trials. PLoS ONE, 9(7), e102557.

    Google Scholar 

  • Robinson, K. M., Grossman, M., White-Devine, T., & D’Esposito, M. (1996). Category-specific difficulty naming with verbs in Alzheimer’s disease. Neurology, 47, 178–182.

    Google Scholar 

  • Rozzini, L., Costardi, D., Chilovi, B. V., Franzoni, S., Trabucchi, M., & Padovani, A. (2007). Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. International Journal of Geriatrics & Psychiatry, 22(4), 356–360.

    Google Scholar 

  • Sarasso, S., Santhanam, P., Määtta, S., Poryazova, R., Ferrarelli, F., Tononi, G., et al. (2010). Non-fluent aphasia and neural reorganization after speech therapy: Insights from human sleep electrophysiology and functional magnetic resonance imaging. Archives Italiennes de Biologie, 148, 271–278.

    Google Scholar 

  • Salehi, M., Reisi, M., & Ghasisin, L. (2017). Lexical retrieval or semantic knowledge? Which one causes naming errors in patients with mild and moderate Alzheimer’s disease? Dementia and Geriatric Cognitive Disorders, 7, 419–429.

    Google Scholar 

  • Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., et al. (2006). Dynamics of language reorganization after stroke. Brain, 129, 1371–1384.

    Google Scholar 

  • Savage, S. A., Piguet, O., & Hodges, J. R. (2014). Giving words new life: Generalization of word retraining outcomes in semantic dementia. Journal of Alzheimer’s Disease, 40(2), 309–317.

    Google Scholar 

  • Schneider, S., Thompson, C., & Luring, B. (1996). Effects of verbal plus gestural matrix training on sentence production in a patient with primary progressive aphasia. Aphasiology, 10(3), 297–317.

    Google Scholar 

  • Schnur, T., Schwartz, M., Kimberg, D., Hirshom, E., Cosleft, H., & Thompson-Schill, S. (2009). Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. PNAS, 106, 322–327.

    Google Scholar 

  • Senaha, M., Brucki, S., & Nitrini, R. (2010). Rehabilitation in semantic dementia: Study of the effectiveness of lexical re-acquisition in three patients. Dementia & Neuropsychologia, 4, 306–312.

    Google Scholar 

  • Silagi, M. L., Bertolucci, P. H., & Ortiz, K. Z. (2015). Naming ability in patients with mild to moderate Alzheimer’s disease: What changes occur with the evolution of the disease? Clinics (Sao Paulo, Brazil), 70(6), 423–428.

    Google Scholar 

  • Snyder, H., Carrillo, M., Grodstein, F., Henriksen, K., Jeromin, A., Lovestone, S., et al. (2014). Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimer’s Dementia, 10(1), 109–114.

    Google Scholar 

  • Sokhadze, E. M., El-Baz, A. S., Sears, L. L., Opris, I., & Casanova, M. F. (2014). rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Frontiers in Systems Neuroscience, 8, 134.

    Google Scholar 

  • Summers, M. J., & Saunders, N. L. (2012). Neuropsychological measures predict decline to Alzheimer’s dementia from mild cognitive impairment. Neuropsychology, 26(4), 498–508.

    Google Scholar 

  • Talassi, E., Guerreschi, M., Feriani, M., Fedi, V., Bianchetti, A., & Trabucchi, M. (2007). Effectiveness of a cognitive rehabilitation program in mild dementia (MD) and mild cognitive impairment (MCI): A case control study. Archives Gerontology & Geriatrics, 44(Suppl 1), 391–399.

    Google Scholar 

  • Taler, V., & Jarema, G. (2006). On-line lexical processing in AD and MCI: An early measure of cognitive impairment? Journal of Neurolinguistics, 19(1), 38–55.

    Google Scholar 

  • Taler, V., & Philips, N. A. (2008). Language performance in Alzheimer’s disease and mild cognitive impairment: A comparative review. Journal of Clinical & Experimental Neuropsychology, 30(5), 501–556.

    Google Scholar 

  • Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Reviews in Neuroscience, 3(3), 228–236.

    Google Scholar 

  • Tippett, D. C., Hillis, A. E., & Tsapkini, K. (2015). Treatment of primary progressive aphasia. Current Treatment Options in Neurology, 17, 362–362.

    Google Scholar 

  • Thompson, C. K., Cho, S., Hsu, C., Wieneke, C., Rademaker, A., Weitner, B. B., et al. (2012). Dissociations between fluency and agrammatism in primary progressive aphasia. Aphasiology, 26, 20–43.

    Google Scholar 

  • Thompson, C. K., Lukic, S., King, M. C., Mesulam, M. M., & Weintraub, S. (2012). Verb and noun deficits in stroke-induced and primary progressive aphasia: The Northwestern Naming Battery. Aphasiology, 26(5), 632–655.

    Google Scholar 

  • Thompson, C. K., Meltzer-Asscher, A., Cho, S., Lee, J., Wieneke, C., Weintraub, S., & Mesulam, M. M. (2013). Syntactic and morphosyntactic processing in stroke-induced and primary progressive aphasia. Behavioral Neurology, 26(1-2), 35–54.

    Google Scholar 

  • Thompson, C. K., & Mack, J. E. (2014). Grammatical impairments in PPA. Aphasiology, 28(8–9), 1018–1037.

    Google Scholar 

  • Trebbastoni, A., Raccah, R., de Lena, C., Zangen, A., & Inghilleri, M. (2013). Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA). Brain Stimulation, 6(4), 545–553.

    Google Scholar 

  • Trebbastoni, A., Pichiorri, F., D’Antonio, F., Campanelli, A., Onesti, E., Ceccanti, M., … Inghilleri, M. (2016). Altered cortical synaptic plasticity in response to 5-Hz repetitive transcranial magnetic stimulation as a new electrophysiological finding in amnestic mild cognitive impairment converting to Alzheimer’s disease: Results from a 4-year prospective cohort study. Frontiers in Aging Neuroscience, 7, 253.

    Google Scholar 

  • Tsagaris, K. Z., Labar, D. R., & Edwards, D. J. (2016). A framework for combining rTMS with behavioral therapy. Frontiers in Systems Neuroscience, 10, 82.

    Google Scholar 

  • Tsapkini, K., & Hillis, A. E. (2013). Spelling intervention in post-stroke aphasia and primary progressive aphasia. Behavioral Neurology, 26, 55–66.

    Google Scholar 

  • Tsapkini, K., Frangakis, C., Gomez, Y., Davis, C., & Hillis, A. E. (2014). Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: Preliminary results and challenges. Aphasiology, 28(8-9), 1112–1130.

    Google Scholar 

  • van den Noort, M., Struys, E., & Bosch, P. (2015). Transcranial magnetic stimulation research on reading and dyslexia: A new clinical intervention technique for treating dyslexia? Neuroimmunol Neuroinflammation, 2, 145–152.

    Google Scholar 

  • Visser, P. J., Verhey, F., Knol, D. L., Scheltens, P., et al. (1999). Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: A prospective cohort study. Lancet Neurology, 8(7), 619–627.

    Google Scholar 

  • Vogel, A., Hasselbalch, S. G., Gade, A., Ziebell, M., & Waldemar, G. (2005). Cognitive and functional neuroimaging correlates for anosognosia in mild cognitive impairment and Alzheimer’s disease. International Journal of Geriatric Psychiatry, 20, 238–246.

    Google Scholar 

  • Walenski, M., Sosta, K., Cappa, S., & Ullman, M. (2009). Deficits on irregular verbal morphology in Italian-speaking Alzheimer’s disease patients. Neuropsychologia, 47, 1245–1255.

    Google Scholar 

  • Wang, J., Wu, D., Chen, Y., Yuan, Y., & Zhang, M. (2013). Effects of transcranial direct current stimulation on language improvement and cortical activation in nonfluent variant primary progressive aphasia. Neuroscience Letters, 549, 29–33.

    Google Scholar 

  • Wassermann, E. M., & Grafman, J. (2005). Recharging cognition with DC brain polarization. Trends in Cognitive Sciences, 9(11), 503–505.

    Google Scholar 

  • Wenisch, E., Cantegreil-Kallen, I., De Rotrou, J., Garrigue, P., Moulin, F., Batouche, F., … Rigaud, A. S. (2007). Cognitive stimulation intervention for elders with mild cognitive impairment compared with normal aged subjects: Preliminary results. Aging Clinical & Experimental Research, 19(4), 316–322.

    Google Scholar 

  • Whatmough, C., & Chertkow, H. (2002). Category-specific recognition impairments in Alzheimer’s disease. In E. Forde & G. Humphreys (Eds.), Category specificity in brain and mind (pp. 181–210). London: Psychology Press.

    Google Scholar 

  • Whitworth, A., Cartwright, J., Beales, A., Leitão, S., Panegyres, P., & Kane, R. (2018). Taking words to a new level: A preliminary investigation of discourse intervention in primary progressive aphasia. Aphasiology, 32(11), 1284–1309.

    Google Scholar 

  • Wilkinson, C., & Murphy, E. (2016). Joint interventions in Autism spectrum disorder: Relating oscillopathies and syntactic deficits. UCL Working Papers in Linguistics, 28, 1–7.

    Google Scholar 

  • Wilson, R. S., Leurgans, S. E., Boyle, P. A., & Bennett, D. A. (2011). Cognitive decline in prodromal Alzheimer’s disease and mild cognitive impairment. Archives of Neurology, 68, 251–356.

    Google Scholar 

  • Wilson, R., Segawa, E., Boyle, P., Anagnos, S., Hizel, L., & Bennett, D. (2013). The natural history of cognitive decline in Alzheimer’s disease. Psychology of Aging, 27(4), 1008–1017.

    Google Scholar 

  • Wilson, S. M., Dronkers, N. F., Ogar, J. M., Jang, J., Growdon, M. E., Agosta, F., et al. (2010). Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. Journal of Neuroscience, 30(50), 16845–16854.

    Google Scholar 

  • Wilson, S. M., Brandt, T. H., Henry, M. L., Babiak, M., Ogar, J. M., Salli, C., et al. (2014). Inflectional morphology in primary progressive aphasia: An elicited production study. Brain & language, 136, 58–68.

    Google Scholar 

  • Winhuisen, L., Thiel, A., Shumacher, B., Kesler, J., Ridolf, J., Haupt, W. F., & Heiss, W. D. (2007). The right inferior frontal gyrus and post-stroke aphasia: A follow-up investigation. Stroke, 38(4), 1286–1292.

    Google Scholar 

  • Zhao, Y., & Li, H. (2017). Neuropsychological intervention of minimal cognitive impairment including language deficits. European Review for Medical & Pharmacological Sciences, 21(4 Suppl), 58–64.

    Google Scholar 

Further Reading

  • Cadorio, I., Lousada, M., Martins, P., & Figueiredo, D. (2017). Generalization and maintenance of treatment gains in primary progressive aphasia (PPA): A systematic review. International Journal of Communication Disorders, 52(5), 543–560.

    Article  Google Scholar 

  • Fyndanis, V., Manouilidou, C., Koufou, E., Karampekios, S., & E-M. Tsapakis. (2013). Agrammatic patterns in Alzheimer’s disease: evidence from Tense, Agreement and Aspect. Aphasiology 27(2), 178–200.

    Google Scholar 

  • Joubert, S.,  Brambati, S. M., Ansado, J., Barbeau, E. J., Felician, O., Didic, M., Lacombe, J., Goldstein, R., Chayer, C., & Kergoat, M-J. (2010). The cognitive and neural expression of semantic memory impairment in mild cognitive impairment and early Alzheimer’s disease. Neuropsychologia 48(4), 978–988.

    Google Scholar 

  • Manouilidou, C., Kordouli, K., Papanagiotou, A., Messinis, L., & Papathanassopoulos, P. (2014). Lexical-semantic deficits in Mild Cognitive Impairment: the case of abstract vs. concrete nouns. Stem-, Spraak-en Taalpathologie 19(S01), 92–95.

    Google Scholar 

  • Norise, C., & Hamilton, R. (2017). Non-invasive brain stimulation in the treatment of post-stroke and neurodegenerative aphasia: Parallels, differences, and lessons learned. Frontiers in Human Neuroscience, 10, 675.

    Google Scholar 

  • Patterson, K., Ralph, M. A. L., Jefferies, E., Woollams, A., Jones, R., Hodges, J. R., & Rogers, T. T. (2006). “Presemantic” cognition in semantic dementia: Six deficits in search of an explanation. Journal of Cognitive Neuroscience 18(2), 169–183.

    Google Scholar 

  • Tippett, D. C., Hillis, A. E., & Tsapkini, K. (2015). Treatment of primary progressive aphasia. Current Treatment Options in Neurology, 17, 362–362.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Georgios Argyropoulos and Ioannis Papakyritsis for thoroughly reading the manuscript. Writing of the chapter was partly supported by grant J6-1806 from ARRS (Slovenian Research Agency) awarded to Christina Manouilidou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Manouilidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manouilidou, C., Nerantzini, M. (2020). Treatment and Intervention Approaches for the Improvement of Language Abilities in Neurodegenerative Diseases. In: Argyropoulos, G.P.D. (eds) Translational Neuroscience of Speech and Language Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-35687-3_3

Download citation

Publish with us

Policies and ethics