Skip to main content

Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1223))

Abstract

The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Conciatori F, Ciuffreda L, Bazzichetto C, Falcone I, Pilotto S, Bria E, Cognetti F, Milella M (2018) mTOR Cross-talk in cancer and potential for combination therapy. Cancers (Basel) 10(1). https://doi.org/10.3390/cancers10010023

    Article  PubMed Central  Google Scholar 

  2. Watanabe R, Wei L, Huang J (2011) mTOR signaling, function, novel inhibitors, and therapeutic targets. J Nucl Med 52(4):497–500. https://doi.org/10.2967/jnumed.111.089623

    Article  CAS  PubMed  Google Scholar 

  3. Mann WA, Brewer HB Jr, Greten H (1991) Genetic variants of apo E: significance for triglyceride metabolism. Z Gastroenterol Verh 26:106

    CAS  PubMed  Google Scholar 

  4. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886. https://doi.org/10.1016/j.cell.2009.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, Kim BY, Erikson RL, Cantley LC, Choo AY, Blenis J (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49(1):172–185. https://doi.org/10.1016/j.molcel.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  6. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. https://doi.org/10.1126/science.1157535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302. https://doi.org/10.1016/j.cub.2004.06.054

    Article  CAS  PubMed  Google Scholar 

  8. Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20(20):2820–2832. https://doi.org/10.1101/gad.1461206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127(1):125–137. https://doi.org/10.1016/j.cell.2006.08.033

    Article  CAS  PubMed  Google Scholar 

  10. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34(12):620–627. https://doi.org/10.1016/j.tibs.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  12. Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10(14):2305–2316. https://doi.org/10.4161/cc.10.14.16586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Ruegg MA, Hall MN (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15(5):725–738. https://doi.org/10.1016/j.cmet.2012.03.015

    Article  CAS  PubMed  Google Scholar 

  14. Saxton RA, Sabatini DM (2017) mTOR Signaling in growth, metabolism, and disease. Cell 169(2):361–371. https://doi.org/10.1016/j.cell.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  15. Conciatori F, Bazzichetto C, Falcone I, Pilotto S, Bria E, Cognetti F, Milella M, Ciuffreda L (2018) Role of mTOR Signaling in tumor microenvironment: an overview. Int J Mol Sci 19(8). https://doi.org/10.3390/ijms19082453

    Article  PubMed Central  Google Scholar 

  16. Araki K, Ellebedy AH, Ahmed R (2011) TOR in the immune system. Curr Opin Cell Biol 23(6):707–715. https://doi.org/10.1016/j.ceb.2011.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18(1):84. https://doi.org/10.1186/s13058-016-0740-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G, Milella M (2006) Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66(11):5549–5554. https://doi.org/10.1158/0008-5472.CAN-05-2825

    Article  PubMed  Google Scholar 

  19. Maxwell PJ, Coulter J, Walker SM, McKechnie M, Neisen J, McCabe N, Kennedy RD, Salto-Tellez M, Albanese C, Waugh DJ (2013) Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma. Eur Urol 64(2):177–188. https://doi.org/10.1016/j.eururo.2012.08.032

    Article  CAS  PubMed  Google Scholar 

  20. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. https://doi.org/10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  21. Duluc C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F, Gayral M, Cordelier P, Delisle MB, Bousquet-Dubouch MP, Tomasini R, Schmid H, Mathonnet M, Pyronnet S, Martineau Y, Bousquet C (2015) Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol Med 7(6):735–753. https://doi.org/10.15252/emmm.201404346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pepper M, Jenkins MK (2011) Origins of CD4(+) effector and central memory T cells. Nat Immunol 12(6):467–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Powell JD, Delgoffe GM (2010) The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33(3):301–311. https://doi.org/10.1016/j.immuni.2010.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30(6):832–844. https://doi.org/10.1016/j.immuni.2009.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303. https://doi.org/10.1038/ni.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valmori D, Tosello V, Souleimanian NE, Godefroy E, Scotto L, Wang Y, Ayyoub M (2006) Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J Immunol 177(2):944–949. https://doi.org/10.4049/jimmunol.177.2.944

    Article  CAS  PubMed  Google Scholar 

  27. Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 205(3):565–574. https://doi.org/10.1084/jem.20071477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H (2015) Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol 16(2):178–187. https://doi.org/10.1038/ni.3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459):485–490. https://doi.org/10.1038/nature12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pollizzi KN, Powell JD (2015) Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol 36(1):13–20. https://doi.org/10.1016/j.it.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  31. Salmond RJ (2018) mTOR regulation of glycolytic metabolism in T cells. Front Cell Dev Biol 6:122. https://doi.org/10.3389/fcell.2018.00122

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32(1):67–78. https://doi.org/10.1016/j.immuni.2009.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu T, Wieland A, Araki K, Davis CW, Ye L, Hale JS, Ahmed R (2012) Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation. Proc Natl Acad Sci U S A 109(25):9965–9970. https://doi.org/10.1073/pnas.1207327109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM, Powell JD (2015) mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J Clin Invest 125(5):2090–2108. https://doi.org/10.1172/JCI77746

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. https://doi.org/10.1038/ncomms12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welte T, Kim IS, Tian L, Gao X, Wang H, Li J, Holdman XB, Herschkowitz JI, Pond A, Xie G, Kurley S, Nguyen T, Liao L, Dobrolecki LE, Pang L, Mo Q, Edwards DP, Huang S, Xin L, Xu J, Li Y, Lewis MT, Wang T, Westbrook TF, Rosen JM, Zhang XH (2016) Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol 18(6):632–644. https://doi.org/10.1038/ncb3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  38. Mercalli A, Calavita I, Dugnani E, Citro A, Cantarelli E, Nano R, Melzi R, Maffi P, Secchi A, Sordi V, Piemonti L (2013) Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140(2):179–190. https://doi.org/10.1111/imm.12126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang H, Westerterp M, Wang C, Zhu Y, Ai D (2014) Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia 57(11):2393–2404. https://doi.org/10.1007/s00125-014-3350-5

    Article  CAS  PubMed  Google Scholar 

  40. Hallowell RW, Collins SL, Craig JM, Zhang Y, Oh M, Illei PB, Chan-Li Y, Vigeland CL, Mitzner W, Scott AL, Powell JD, Horton MR (2017) mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nat Commun 8:14208. https://doi.org/10.1038/ncomms14208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rajabi M, Mousa SA (2017) The role of angiogenesis in cancer treatment. Biomedicine 5(2). https://doi.org/10.3390/biomedicines5020034

    Article  PubMed Central  Google Scholar 

  42. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. https://doi.org/10.1177/1947601911423654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen W, Ma T, Shen XN, Xia XF, Xu GD, Bai XL, Liang TB (2012) Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res 72(6):1363–1372. https://doi.org/10.1158/0008-5472.CAN-11-2684

    Article  CAS  PubMed  Google Scholar 

  44. Vinals F, Chambard JC, Pouyssegur J (1999) p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem 274(38):26776–26782. https://doi.org/10.1074/jbc.274.38.26776

    Article  CAS  PubMed  Google Scholar 

  45. Sun S, Chen S, Liu F, Wu H, McHugh J, Bergin IL, Gupta A, Adams D, Guan JL (2015) Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling. Cancer Cell 28(6):758–772. https://doi.org/10.1016/j.ccell.2015.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wagle N, Grabiner BC, Van Allen EM, Hodis E, Jacobus S, Supko JG, Stewart M, Choueiri TK, Gandhi L, Cleary JM, Elfiky AA, Taplin ME, Stack EC, Signoretti S, Loda M, Shapiro GI, Sabatini DM, Lander ES, Gabriel SB, Kantoff PW, Garraway LA, Rosenberg JE (2014) Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov 4(5):546–553. https://doi.org/10.1158/2159-8290.CD-13-0353

    Article  PubMed  PubMed Central  Google Scholar 

  47. Faes S, Santoro T, Demartines N, Dormond O (2017) Evolving significance and future relevance of anti-angiogenic activity of mTOR inhibitors in cancer therapy. Cancers (Basel) 9(11). https://doi.org/10.3390/cancers9110152

    Article  PubMed Central  Google Scholar 

  48. Milella M, Falcone I, Conciatori F, Matteoni S, Sacconi A, De Luca T, Bazzichetto C, Corbo V, Simbolo M, Sperduti I, Benfante A, Del Curatolo A, Cesta Incani U, Malusa F, Eramo A, Sette G, Scarpa A, Konopleva M, Andreeff M, McCubrey JA, Blandino G, Todaro M, Stassi G, De Maria R, Cognetti F, Del Bufalo D, Ciuffreda L (2017) PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci Rep 7:43013. https://doi.org/10.1038/srep43013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ciuffreda L, Del Curatolo A, Falcone I, Conciatori F, Bazzichetto C, Cognetti F, Corbo V, Scarpa A, Milella M (2017) Lack of growth inhibitory synergism with combined MAPK/PI3K inhibition in preclinical models of pancreatic cancer. Ann Oncol 28(11):2896–2898. https://doi.org/10.1093/annonc/mdx335

    Article  PubMed  Google Scholar 

  50. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183. https://doi.org/10.1016/j.molcel.2010.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim LC, Cook RS, Chen J (2017) mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36(16):2191–2201. https://doi.org/10.1038/onc.2016.363

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Li X, Liu S, Guo L, Zhang B, Zhang J, Ye Q (2017) Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology 66(6):1920–1933. https://doi.org/10.1002/hep.29360

    Article  CAS  PubMed  Google Scholar 

  53. Kitano H, Kitadai Y, Teishima J, Yuge R, Shinmei S, Goto K, Inoue S, Hayashi T, Sentani K, Yasui W, Matsubara A (2017) Combination therapy using molecular-targeted drugs modulates tumor microenvironment and impairs tumor growth in renal cell carcinoma. Cancer Med 6(10):2308–2320. https://doi.org/10.1002/cam4.1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, Dubois C, Cantelmo AR, Chen R, Loroch S, Timmerman E, Caixeta V, Bloch K, Conradi LC, Treps L, Staes A, Gevaert K, Tee A, Dewerchin M, Semenkovich CF, Impens F, Schilling B, Verdin E, Swinnen JV, Meier JL, Kulkarni RA, Sickmann A, Ghesquiere B, Schoonjans L, Li X, Mazzone M, Carmeliet P (2018) Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab 28(6):866–880, e815. https://doi.org/10.1016/j.cmet.2018.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, Zheng K, Lin W, Li X, Yao X, Pan M, Zhao L (2019) Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics 9(4):1001–1014. https://doi.org/10.7150/thno.30056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smyth MJ, Ngiow SF, Ribas A, Teng MW (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13(3):143–158. https://doi.org/10.1038/nrclinonc.2015.209

    Article  CAS  PubMed  Google Scholar 

  57. Tormoen GW, Crittenden MR, Gough MJ (2018) Role of the immunosuppressive microenvironment in immunotherapy. Adv Radiat Oncol 3(4):520–526. https://doi.org/10.1016/j.adro.2018.08.018

    Article  PubMed  PubMed Central  Google Scholar 

  58. Umansky V, Sevko A (2013) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron 6(2):169–177. https://doi.org/10.1007/s12307-012-0126-7

    Article  CAS  PubMed  Google Scholar 

  59. Abu-Eid R, Samara RN, Ozbun L, Abdalla MY, Berzofsky JA, Friedman KM, Mkrtichyan M, Khleif SN (2014) Selective inhibition of regulatory T cells by targeting the PI3K-Akt pathway. Cancer Immunol Res 2(11):1080–1089. https://doi.org/10.1158/2326-6066.CIR-14-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gato-Canas M, Martinez de Morentin X, Blanco-Luquin I, Fernandez-Irigoyen J, Zudaire I, Liechtenstein T, Arasanz H, Lozano T, Casares N, Chaikuad A, Knapp S, Guerrero-Setas D, Escors D, Kochan G, Santamaria E (2015) A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget 6(29):27160–27175. https://doi.org/10.18632/oncotarget.4746

    Article  PubMed  PubMed Central  Google Scholar 

  61. O’Donnell JS, Massi D, Teng MWL, Mandala M (2018) PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol 48:91–103. https://doi.org/10.1016/j.semcancer.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  62. Shen X, Zhao B (2018) Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ 362:k3529. https://doi.org/10.1136/bmj.k3529

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, Liu LN, Gills JJ, Dennis PA (2016) Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 76(2):227–238. https://doi.org/10.1158/0008-5472.CAN-14-3362

    Article  CAS  PubMed  Google Scholar 

  65. Song M, Chen D, Lu B, Wang C, Zhang J, Huang L, Wang X, Timmons CL, Hu J, Liu B, Wu X, Wang L, Wang J, Liu H (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One 8(6):e65821. https://doi.org/10.1371/journal.pone.0065821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, Chawla A, Curran M, Hwu P, Sharma P, Litton JK, Molldrem JJ, Alatrash G (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2(4):361–370. https://doi.org/10.1158/2326-6066.CIR-13-0127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saunders RN, Metcalfe MS, Nicholson ML (2001) Rapamycin in transplantation: a review of the evidence. Kidney Int 59(1):3–16. https://doi.org/10.1046/j.1523-1755.2001.00460.x

    Article  CAS  PubMed  Google Scholar 

  68. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT, Kovarik J, Carson S, Glass DJ, Klickstein LB (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6(268):268ra179. https://doi.org/10.1126/scitranslmed.3009892

    Article  CAS  PubMed  Google Scholar 

  69. Pedicord VA, Cross JR, Montalvo-Ortiz W, Miller ML, Allison JP (2015) Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness. J Immunol 194(5):2089–2098. https://doi.org/10.4049/jimmunol.1402390

    Article  CAS  PubMed  Google Scholar 

  70. Langdon S, Hughes A, Taylor MA, Kuczynski EA, Mele DA, Delpuech O, Jarvis L, Staniszewska A, Cosulich S, Carnevalli LS, Sinclair C (2018) Combination of dual mTORC1/2 inhibition and immune-checkpoint blockade potentiates anti-tumour immunity. Oncoimmunology 7(8):e1458810. https://doi.org/10.1080/2162402X.2018.1458810

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jiang Q, Weiss JM, Back T, Chan T, Ortaldo JR, Guichard S, Wiltrout RH (2011) mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res 71(12):4074–4084. https://doi.org/10.1158/0008-5472.CAN-10-3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, Mischel PS, Stokoe D, Pieper RO (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13(1):84–88. https://doi.org/10.1038/nm1517

    Article  CAS  PubMed  Google Scholar 

  73. Zhao L, Li C, Liu F, Zhao Y, Liu J, Hua Y, Liu J, Huang J, Ge C (2017) A blockade of PD-L1 produced antitumor and antimetastatic effects in an orthotopic mouse pancreatic cancer model via the PI3K/Akt/mTOR signaling pathway. Onco Targets Ther 10:2115–2126. https://doi.org/10.2147/OTT.S130481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weekes CD, Song D, Arcaroli J, Wilson LA, Rubio-Viqueira B, Cusatis G, Garrett-Mayer E, Messersmith WA, Winn RA, Hidalgo M (2012) Stromal cell-derived factor 1alpha mediates resistance to mTOR-directed therapy in pancreatic cancer. Neoplasia 14(8):690–701. https://doi.org/10.1593/neo.111810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ierano C, Santagata S, Napolitano M, Guardia F, Grimaldi A, Antignani E, Botti G, Consales C, Riccio A, Nanayakkara M, Barone MV, Caraglia M, Scala S (2014) CXCR4 and CXCR7 transduce through mTOR in human renal cancer cells. Cell Death Dis 5:e1310. https://doi.org/10.1038/cddis.2014.269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovica Ciuffreda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bazzichetto, C., Conciatori, F., Falcone, I., Ciuffreda, L. (2020). Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1223. Springer, Cham. https://doi.org/10.1007/978-3-030-35582-1_4

Download citation

Publish with us

Policies and ethics