Skip to main content

Selecting Relevant Association Rules From Imperfect Data

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11940))

Included in the following conference series:

Abstract

Association Rule Mining (ARM) in the context of imperfect data (e.g. imprecise data) has received little attention so far despite the prevalence of such data in a wide range of real-world applications. In this work, we present an ARM approach that can be used to handle imprecise data and derive imprecise rules. Based on evidence theory and Multiple Criteria Decision Analysis, the proposed approach relies on a selection procedure for identifying the most relevant rules while considering information characterizing their interestingness. The several measures of interestingness defined for comparing the rules as well as the selection procedure are presented. We also show how a priori knowledge about attribute values defined into domain taxonomies can be used to (i) ease the mining process, and to (ii) help identifying relevant rules for a domain of interest. Our approach is illustrated using a concrete simplified case study related to humanitarian projects analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the simplification of the mining process here refers to a reduction of complexity in terms of the number of rules analysed, i.e. search space size. Algorithmic contributions and therefore complexity analyses regarding efficient implementations of the proposed approach are left for future work.

  2. 2.

    Indeed all the measures used in our approach take values in the interval [0, 1], then a measure k to minimize can be changed to a measure to maximize by considering \(1-g_k(r)\) instead of \(g_k(r)\).

  3. 3.

    Evaluating support and confidence of \(\overline{A} \rightarrow B\) and \(\overline{A} \rightarrow \overline{B}\) can lead to undefined values, e.g. evaluating \(\overline{A} \rightarrow B\), we have \(Bel(\overline{A} \times B) = 0\) when \(\overline{A}\) has never been observed, leading to \(Bel(B |\overline{A})\) being undefined. However, pruning using dominance and Electre I requires the same measures to be defined. Undefined values are thus substituted by an arbitrary value that neither favor nor penalize the evaluation of the rule \(A \rightarrow B\). The median of \(Bel(\overline{A} \times B)\) (resp. \(Bel(\overline{A} \times \overline{B})\)) has been chosen. Note that \(A \rightarrow \overline{B}\) is not concerned since evaluating \(A\rightarrow B\) implies evidence on A.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD Record, vol. 22, pp. 207–216. ACM (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  3. Ait-Mlouk, A., Gharnati, F., Agouti, T.: Multi-agent-based modeling for extracting relevant association rules using a multi-criteria analysis approach. Vietnam J. Comput. Sci. 3(4), 235–245 (2016)

    Article  Google Scholar 

  4. Bouker, S., Saidi, R., Yahia, S.B., Nguifo, E.M.: Ranking and selecting association rules based on dominance relationship. In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, vol. 1, pp. 658–665. IEEE (2012)

    Google Scholar 

  5. Chen, M.C.: Ranking discovered rules from data mining with multiple criteria by data envelopment analysis. Expert Syst. Appl. 33(4), 1110–1116 (2007)

    Article  Google Scholar 

  6. Choi, D.H., Ahn, B.S., Kim, S.H.: Prioritization of association rules in data mining: multiple criteria decision approach. Expert Syst. Appl. 29(4), 867–878 (2005)

    Article  Google Scholar 

  7. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  8. Djouadi, Y., Redaoui, S., Amroun, K.: Mining association rules under imprecision and vagueness: towards a possibilistic approach. In: 2007 IEEE International Fuzzy Systems Conference, pp. 1–6. IEEE (2007)

    Google Scholar 

  9. Dubois, D., Denoeux, T.: Conditioning in dempster-shafer theory: prediction vs. revision. In: Denoeux, T., Masson, M.H. (eds.) Belief Functions: Theory and Applications, pp. 385–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29461-7_45

    Chapter  Google Scholar 

  10. Fagin, R., Halpern, J.Y.: A new approach to updating beliefs. In: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI 1990, pp. 347–374. Elsevier Science Inc., New York, NY, USA (1991). http://dl.acm.org/citation.cfm?id=647233.760137

  11. Figueira, J., Roy, B.: Determining the weights of criteria in the electre type methods with a revised simos’ procedure. Eur. J. Oper. Res. 139(2), 317–326 (2002)

    Article  Google Scholar 

  12. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 9-es (2006)

    Article  Google Scholar 

  13. Hewawasam, K., Premaratne, K., Subasingha, S., Shyu, M.L.: Rule mining and classification in imperfect databases. In: 2005 7th International Conference on Information Fusion, vol. 1, p. 8. IEEE (2005)

    Google Scholar 

  14. Hong, T.P., Lin, K.Y., Wang, S.L.: Fuzzy data mining for interesting generalized association rules. Fuzzy Sets Syst. 138(2), 255–269 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kotsiantis, S., Kanellopoulos, D.: Association rules mining: a recent overview. GESTS Int. Trans. Comput. Sci. Eng. 32(1), 71–82 (2006)

    Google Scholar 

  16. Liu, B., Hsu, W., Chen, S., Ma, Y.: Analyzing the subjective interestigness of association rules. IEEE Intell. Syst. 15(5), 47–55 (2000). https://doi.org/10.1109/5254.889106

    Article  Google Scholar 

  17. Nguyen Le, T.T., Huynh, H.X., Guillet, F.: Finding the most interesting association rules by aggregating objective interestingness measures. In: Richards, D., Kang, B.-H. (eds.) PKAW 2008. LNCS (LNAI), vol. 5465, pp. 40–49. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01715-5_4

    Chapter  Google Scholar 

  18. Roy, B.: Classement et choix en présence de points de vue multiples. Revue française d’informatique et de recherche opérationnelle 2(8), 57–75 (1968)

    Article  Google Scholar 

  19. Samet, A., Lefèvre, E., Yahia, S.B.: Evidential data mining: precise support and confidence. J. Intell. Inf. Syst. 47(1), 135–163 (2016)

    Article  Google Scholar 

  20. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity in wordNet. In: Ecai, vol. 16, p. 1089 (2004)

    Google Scholar 

  21. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  22. Silberschatz, A., Tuzhilin, A.: What makes patterns interesting in knowledge discovery systems. IEEE Trans. Knowl. Data Eng. 8(6), 970–974 (1996)

    Article  Google Scholar 

  23. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 32–41. ACM (2002)

    Google Scholar 

  24. Tobji, M.B., Yaghlane, B.B., Mellouli, K.: A new algorithm for mining frequent itemsets from evidential databases. Proc. IPMU 8, 1535–1542 (2008)

    Google Scholar 

  25. Bach Tobji, M.A., Ben Yaghlane, B., Mellouli, K.: Frequent itemset mining from databases including one evidential attribute. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 19–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87993-0_4

    Chapter  Google Scholar 

  26. Toloo, M., Sohrabi, B., Nalchigar, S.: A new method for ranking discovered rules from data mining by dea. Expert Syst. Appl. 36(4), 8503–8508 (2009)

    Article  Google Scholar 

  27. Vaillant, B., Lenca, P., Lallich, S.: A clustering of interestingness measures. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 290–297. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30214-8_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile L’Héritier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

L’Héritier, C., Harispe, S., Imoussaten, A., Dusserre, G., Roig, B. (2019). Selecting Relevant Association Rules From Imperfect Data. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35514-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35513-5

  • Online ISBN: 978-3-030-35514-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics