Skip to main content

The Microbiome in HIV-Infected Children

  • Chapter
  • First Online:
HIV Infection in Children and Adolescents

Abstract

Every human being has, within itself, a microbiome, which includes the gastrointestinal tract, the respiratory tract, the genito-urinary tract and the skin. Whilst the most well-known species are bacteria, there is also a microbiome of fungi and viruses in all these regions. Humans and microbes have evolved together over eons of time, and thus, the human immune system and the microbiome demonstrate complex interactions. The presence and functioning of a microbiome is critical to the development of the human immune response, and, in turn, the immune system functions to maintain the microbiome. A number of factors are present in modern lifestyles that actively destroy the ‘normal’ microbiome and result in a process known as dysbiosis.

Over the last few years, the importance of the microbiome in HIV-infected children (and adults) has emerged. It is highly likely that the microbiome is unique in HIV-infected individuals and that specific clusters determine processes and profiles in various organ systems. In HIV-infected individuals dysbiosis has many forms, including reduced diversity or even increased diversity, but with replacement by pathogenic taxa.

It is now becoming clear that susceptibility to, progression of, and co-morbidities in HIV-infected patients (especially children) is also intimately linked to microbial diversity. The presence of a microbiome, and dysbiotic factors, are functional in many organ systems of children who are HIV-infected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20.

    Article  PubMed  CAS  Google Scholar 

  3. Clarridge JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17(4):840–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5(1):16–8.

    Article  CAS  PubMed  Google Scholar 

  5. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peterson J, Garges S, Giovanni M, NIH HMP Working Group, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035S–45S.

    Article  CAS  PubMed  Google Scholar 

  8. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1):2–11.

    Article  PubMed  Google Scholar 

  9. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642–7.

    Article  CAS  PubMed  Google Scholar 

  11. Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190(11):1283–92.

    Article  PubMed  Google Scholar 

  13. Scagnolari C, Antonelli G. Type I interferon and HIV: subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev. 2018;40:19–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koay WLA, Siems LV, Persaud D. The microbiome and HIV persistence: implications for viral remission and cure. Curr Opin HIV AIDS. 2018;13(1):61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frank DN, Manigart O, Leroy V. Altered vaginal microbiota are associated with perinatal mother-to-child transmission of HIV in African women from Burkina Faso. J Acquir Immune Defic Syndr. 2012;60(3):299–306.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berard AR, Perner M, Mutch S, Farr Zuend C, McQueen P, Burgener AD. Understanding mucosal and microbial functionality of the female reproductive tract by metaproteomics: implications for HIV transmission. Am J Reprod Immunol. 2018;80(2):e12977.

    Article  PubMed  Google Scholar 

  17. Farcasanu M, Kwon DS. The influence of cervicovaginal microbiota on mucosal immunity and prophylaxis in the battle against HIV. Curr HIV/AIDS Rep. 2018;15(1):30–8.

    Article  PubMed  Google Scholar 

  18. Wessels JM, Lajoie J, Vitali D. Association of high-risk sexual behaviour with diversity of the vaginal microbiota and abundance of Lactobacillus. PLoS One. 2017;12(11):e0187612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Scully EP. Sex differences in HIV infection. Curr HIV/AIDS Rep. 2018;15(2):136–46.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abdool Karim SS, Passmore JS, Baxter C. The microbiome and HIV prevention strategies in women. Curr Opin HIV AIDS. 2018;13(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  21. McClelland RS, Lingappa JR, Srinivasan S, et al. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. Lancet Infect Dis. 2018;18(5):554–64.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vázquez-Castellanos JF, Serrano-Villar S, Jiménez-Hernández N, et al. Interplay between gut microbiota metabolism and inflammation in HIV infection. SME J. 2018;12(8):1964–76.

    Google Scholar 

  23. Wood LF, Brown BP, Lennard K, et al. Feeding-related gut microbial composition associates with peripheral T cell activation and mucosal gene expression in African infants. Clin Infect Dis. 2018;67(8):1237–46. https://doi.org/10.1093/cid/ciy265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neff CP, Krueger O, Xiong K, et al. Fecal microbiota composition drives immune activation in HIV-infected individuals. EBioMedicine. 2018;30:192–202.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reis EC, da Silva LT, da Silva WC, Rios A, Duarte AJ, Oshiro TM, Crovella S, Pontillo A. Host genetics contributes to the effectiveness of dendritic cell-based HIV immunotherapy. Hum Vaccin Immunother. 2018;14(8):1995–2002. https://doi.org/10.1080/21645515.2018.1463942.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou Y, Ou Z, Tang X, et al. Alterations in the gut microbiota of patients with acquired immune deficiency syndrome. J Cell Mol Med. 2018;22(4):2263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Powis KM, Souda S, Lockman S, et al. Cotrimoxazole prophylaxis was associated with enteric commensal bacterial resistance among HIV-exposed infants in a randomized controlled trial, Botswana. J Int AIDS Soc. 2017;20:3.

    Article  CAS  Google Scholar 

  28. Nel E. Severe acute malnutrition. Curr Opin Clin Nutr Metab Care. 2018;21(3):195–9.

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg BE, Mongodin EF, Jones CE, Chung M, Fraser CM, Tate A, Zeichner SL. The oral bacterial communities of children with well-controlled HIV infection and without HIV Infection. PLoS One. 2015;10(7):e0131615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sharifzadeh A, Khosravi AR, Shokri H, Asadi Jamnani F, Hajiabdolbaghi M, Ashrafi Tamami I. Oral microflora and their relation to risk factors in HIV+ patients with oropharyngeal candidiasis. J Mycol Med. 2013;23(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  31. Starr JR, Huang Y, Lee KH, Pediatric HIV/AIDS Cohort Study. Oral microbiota in youth with perinatally acquired HIV infection. Microbiome. 2018;6(1):100.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lewy T, Hong BY, Weiser B, Burger H, Tremain A, Weinstock G, Anastos K, George M. Oral microbiome in HIV-infected women: shifts in the abundance of pathogenic and beneficial bacteria are associated with aging, HIV load, CD4 count, and ART. AIDS Res Hum Retrovir. 2017;35(3):276–86. https://doi.org/10.1089/AID.2017.0200.

    Article  Google Scholar 

  33. Bhattacharya SD, Niyogi SK, Bhattacharyya S, Arya BK, Chauhan N, Mandal S. Associations between potential bacterial pathogens in the nasopharynx of HIV-infected children. Indian J Pediatr. 2012;79(11):1447–53.

    Article  PubMed  Google Scholar 

  34. Kelly MS, Surette MG, Smieja M, et al. The nasopharyngeal microbiota of children with respiratory infections in Botswana. Pediatr Infect Dis J. 2017;36(9):e211–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Masekela R, Anderson R, Moodley T, Kitchin OP, Risenga SM, Becker PJ, Green RJ. HIV-related bronchiectasis in children: an emerging spectre in high tuberculosis burden areas. Int J TB Lung Dis. 2012;16:114–9.

    Article  CAS  Google Scholar 

  36. Masekela R, Vosloo S, Venter SN, de Beer WZ, Green RJ. The lung microbiome in children with HIV-bronchiectasis: a cross-sectional pilot study. BMC Pulm Med. 2018;18(1):87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gonzalez-Martinez C, Kranzer K, McHugh G, BREATHE Study Team, et al. Azithromycin versus placebo for the treatment of HIV-associated chronic lung disease in children and adolescents (BREATHE trial): study protocol for a randomised controlled trial. Trials. 2017;18(1):622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lagathu C, Cossarizza A, Béréziat V, Nasi M, Capeau J, Pinti M. Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers. AIDS. 2017;31(Suppl 2):S105–19.

    Article  CAS  PubMed  Google Scholar 

  39. Monachese M, Cunningham-Rundles S, Diaz MA, et al. Probiotics and prebiotics to combat enteric infections and HIV in the developing world: a consensus report. Gut Microbes. 2011;2(3):198–207.

    Article  PubMed  Google Scholar 

  40. Ishizaki A, Bi X, Nguyen LV, Matsuda K, Pham HV, Phan CTT, Khu DTK, Ichimura H. Effects of short-term probiotic ingestion on immune profiles and microbial translocation among HIV-1-infected Vietnamese children. Int J Mol Sci. 2017;18(10):E2185.

    Article  PubMed  CAS  Google Scholar 

  41. Arnbjerg CJ, Vestad B, Hov JR, et al. Effect of lactobacillus rhamnosus GG supplementation on intestinal inflammation assessed by Pet/MRI scans and gut microbiota composition in HIV-infected individuals. J Acquir Immune Defic Syndr. 2018;78(4):450–7. https://doi.org/10.1097/QAI.0000000000001693.

    Article  PubMed  Google Scholar 

  42. Deusch S, Serrano-Villar S, Rojo D, et al. Effects of HIV, antiretroviral therapy and prebiotics on the active fraction of the gut microbiota. AIDS. 2018;32(10):1229–37.

    Article  CAS  PubMed  Google Scholar 

  43. Serrano-Villar S, de Lagarde M, Vázquez-Castellanos J, et al. Effects of immunonutrition in advanced HIV disease: a randomized placebo controlled clinical trial (Promaltia Study). Clin Infect Dis. 2018;68(1):120–30. https://doi.org/10.1093/cid/ciy414.

    Article  Google Scholar 

  44. Presti RM, Handley SA, Droit L, et al. Alterations in the oral microbiome in HIV-infected participants after antiretroviral therapy administration are influenced by immune status. AIDS. 2018;32(10):1279–87.

    Article  CAS  PubMed  Google Scholar 

  45. Maloupazoa Siawaya AC, Kuissi Kamgaing E, Minto’o Rogombe S, et al. HIV-exposed uninfected compared with unexposed infants show the presence of leucocytes, lower lactoferrin levels and antimicrobial-resistant micro-organisms in the stool. Paediatr Int Child Health. 2019;39(4):249–58.

    Article  CAS  PubMed  Google Scholar 

  46. Machiavelli A, Duarte RTD, Pires MMS, Zárate-Bladés CR, Pinto AR. The impact of in utero HIV exposure on gut microbiota, inflammation, and microbial translocation. Gut Microbes. 2019;10(5):599–614.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dzanibe S, Jaspan HB, Zulu MZ, Kiravu A, Gray CM. Impact of maternal HIV exposure, feeding status, and microbiome on infant cellular immunity. J Leukoc Biol. 2019;105:281–9.

    Article  CAS  PubMed  Google Scholar 

  48. Qian Y, Yang X, Xu S, Wu C, Qin N, Chen SD, Xiao Q. Detection of microbial 16S rRNA gene in the blood of patients with Parkinson’s disease. Front Ageing Neurosci. 2018;10:156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Green, R.J. (2020). The Microbiome in HIV-Infected Children. In: Bobat, R. (eds) HIV Infection in Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-030-35433-6_21

Download citation

Publish with us

Policies and ethics