Skip to main content

Standard Deviation Clustering Combined with Visual Psychological Test Algorithm for Image Segmentation

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11888))

Included in the following conference series:

  • 1745 Accesses

Abstract

Detection of the visual salient image area for image segmentation, image recognition, and adaptive compression application is beneficial. It makes an object, a person, or some pixels stand out against the background of the image and provide support for image recognition and target detection. The detection can simplify the process of computer visual image processing and improve the effect and efficiency of computer visual inspection. This paper introduces a kind of salient detection method, without any manual intervention, and uses the method of decomposing brightness, color space, negative map solution, and standard deviation to find the super-distance pixel in the image. The method of clustering is used to separate the region of objects and image background, and output RGB color salient objects image. Moreover, it can accurately highlight the object contour and internal pixels. This method studies the characteristics of the original pixels such as brightness or color and utilizes the image basis features to achieve the image saliency detection. It has high adaptive detection ability, low time complexity and high computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th ACM International Conference on Multimedia, pp. 815–824. ACM, October 2006

    Google Scholar 

  2. Achanta, R., Sustrunk, S.: Saliency detection using maximum symmetric surround. In: Proceedings of the IEEE Conference on Image Processing, Hong Kong, China, December 2010, pp. 2653–2656. IEEE, Hong Kong, December 2010

    Google Scholar 

  3. Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  4. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79547-6_7

    Chapter  Google Scholar 

  5. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of the IEEE CVPR, pp. 1597–1604. IEEE, Miami, June 2009

    Google Scholar 

  6. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: Proceedings of the IEEE CVPR, pp. 1–8. IEEE, Minneapolis, June 2007

    Google Scholar 

  7. Vikram, T.N., Tscherepanow, M., Wrede, B.: A saliency map based on sampling an image into random rectangular regions of interest. Pattern Recogn. 45(9), 3114–3124 (2012)

    Article  Google Scholar 

  8. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  9. Otazu, X., Parraga, C.A., Vanrell, M.: Toward a unified chromatic induction model. J. Vis. 10(12), 5 (2010)

    Article  Google Scholar 

  10. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: Proceedings of the IEEE CVPR, pp. 433–440. IEEE, Colorado Springs, August 2011

    Google Scholar 

  11. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32–32 (2008)

    Article  Google Scholar 

  12. Zhang, L., Tong, M.H., Cottrell, G.W.: SUNDAy: saliency using natural statistics for dynamic analysis of scenes. In: Proceedings of the 31st Annual Cognitive Science Conference, pp. 2944–2949. AAAI Press, Cambridge, December 2009

    Google Scholar 

  13. Kanan, C., Tong, M.H., Zhang, L., Cottrell, G.W.: SUN: top-down saliency using natural statistics. Vis. Cogn. 17(6–7), 979–1003 (2009)

    Article  Google Scholar 

  14. Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_27

    Chapter  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778, June 2016

    Google Scholar 

  16. Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: Proceedings of the IEEE CVPR, pp. 1966–1974. IEEE, June 2015

    Google Scholar 

  17. Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: Proceedings of International Conference on Internet Multimedia Computing and Service, p. 23. ACM, July 2014

    Google Scholar 

  18. Wang, A., Wang, M., Li, X., Mi, Z., Zhou, H.: A two-stage bayesian integration framework for salient object detection on light field. Neural Process. Lett. 46(3), 1083–1094 (2017)

    Article  Google Scholar 

  19. Wang, A., Wang, M.: RGB-D salient object detection via minimum barrier distance transform and saliency fusion. IEEE Sig. Process. Lett. 24(5), 663–667 (2017)

    Article  Google Scholar 

  20. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: Proceedings of the IEEE CVPR, pp. 2806–2813. IEEE, June 2014

    Google Scholar 

  21. He, S., Lau, R.W., Liu, W., Huang, Z., Yang, Q.: SuperCNN: a superpixelwise convolutional neural network for salient object detection. Int. J. Comput. Vis. 115(3), 330–344 (2015)

    Article  MathSciNet  Google Scholar 

  22. Cebeci, Z., Yildiz, F.: Comparison of K-means and fuzzy C-means algorithms on different cluster structures. JAI 6(3), 13–23 (2015)

    Google Scholar 

  23. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Proc. Comput. Sci. 54, 764–771 (2015)

    Article  Google Scholar 

  24. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  25. W-l, I.: Getting the brain’s attention. Science 278, 35–37 (1997)

    Article  Google Scholar 

  26. Kozasa, E.H., et al.: Meditation training increases brain efficiency in an attention task. Neuroimage 59(1), 745–749 (2012)

    Article  Google Scholar 

  27. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs for salient object detection in images. IEEE Trans. Image Process. 19(12), 3232–3242 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Jin, J., Liu, Z. (2019). Standard Deviation Clustering Combined with Visual Psychological Test Algorithm for Image Segmentation. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2019. Lecture Notes in Computer Science(), vol 11888. Springer, Cham. https://doi.org/10.1007/978-3-030-35231-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35231-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35230-1

  • Online ISBN: 978-3-030-35231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics