Skip to main content

Metal Nanoparticle Based Antibacterial Nanocomposites for Skin Infections

  • Chapter
  • First Online:

Abstract

There are ample numbers of patients who have been suffering from skin and soft tissue infections (SSTIs) all over the world. Development of SSTIs associates with various symptoms such as inflammatory response, fever and formation of lesions. Conventional antibiotic therapy has been used as routine practice for this kind of medical situation. However, the present scenario becomes more challenging due to the prevalence of antibiotic resistant bacterial infections. Moreover, the delayed wound healing due to certain medical conditions such as diabetes leads to an exaggeration of the complicacy of the skin infections. Therefore, healing bacterial skin infections with conventional antibiotics is not always found to be effective. Moreover, skin infections sometimes result in permanent scarring on infected areas after complete recovery also. This demands new therapeutics for skin infections as well as removal of the scar. In order to address these issues, for last few decades, nanotechnology-based approaches have been attempted by various research groups. These offer significant prospects of developing new therapeutic agents which exhibit heightened bactericidal activity against Gram-positive and Gram-negative bacterial infection. Additionally, the nanoscale materials have been used as an integrated component of several skincare products like gels and creams which assist the removal of the scar and the protection of the skin from potentially toxic UV light and other harmful agents like pollutants too. There have been several nanoscale materials such as metal and metal oxide nanoparticles (NPs), nanospheres, nanocapsules and various other nanocomposites which show huge potential of using these to combat against skin infections due to antibiotic resistant bacteria also.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ag NPs:

Silver nanoparticles

ATP:

Adenosine triphosphate

Au NPs:

Gold nanoparticles

Cu NPs:

Copper nanoparticles

CuO:

Copper oxide

DNA:

Deoxyribonucleic acid

ECM:

Extracellular matrix

FDA:

Food and Drug Administration

Fe3O4:

Iron oxide

MDR:

Multidrug resistant

MgO:

Magnesium oxide

NPs:

Nanoparticles

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SPION:

Super-paramagnetic iron oxide

SSTIs:

Skin and soft tissue infections

TiO2:

Titanium dioxide

UV:

Ultraviolet

XDR:

Extensive drug resistant

ZnO:

Zinc oxide

References

  • Allahverdiyev AM, Abamor ES, Bagirova M, Baydar SY, Ates SC, Kaya F, Kaya C, Rafailovich M (2013) Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp Parasitol 135:55–63

    Article  CAS  PubMed  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  • Anghel AG, Grumezescu AM, Chirea M, Grumezescu V, Socol G, Iordache F, Oprea AE, Anghel I, Holban AM (2014) MAPLE fabricated Fe3O4@Cinnamomum verum antimicrobial surfaces for improved gastrostomy tubes. Molecules 19:8981–8994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anissimov YG (2014) Mathematical models for skin toxicology. Expert Opin Drug Metab Toxicol 10:551–560

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Khan HM, Khan AA, Sultan A, Azam A (2012) Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles. World J Microbiol Biotechnol 28:1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med 2015:246012

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhowmick P, Pancsa R, Guharoy M, Tompa P (2013) Functional diversity and structural disorder in the human ubiquitination pathway. PLoS One 8:e65443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2:395–401

    Article  PubMed  Google Scholar 

  • Boer M, Duchnik E, Maleszka R, Marchlewicz M (2016) Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Adv Dermatol Allergol XXXIII(1):1–5

    Article  Google Scholar 

  • Cardoso VS, Quelemes PV, Amorin A, Primo FL, Gobo GG, Tedesco AC, Mafud AC, Mascarenhas YP, Corrêa JR, Kuckelhaus SA, Eiras C, Leite JRS, Silva D, dos Santos Júnior JR (2014) Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J Nanobiotechnol 12:36

    Article  CAS  Google Scholar 

  • Couto A, Fernandes R, Cordeiro MNS, Reis SS, Ribeiro RT, Pessoa AM (2014) Dermic diffusion and stratum corneum: A state of the art review of mathematical models. J Control Release 177:74–83

    Article  CAS  PubMed  Google Scholar 

  • Crosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F, Adami G, Apostoli P, De Palma G, Bovenzi M, Campanini M, Filon F (2015) Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int J Environ Res Public Health 12:9282–9297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    PubMed  PubMed Central  Google Scholar 

  • DeLouise LA (2012) Applications of nanotechnology in dermatology. J Invest Dermatol 132:964–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar S, Murawala P, Shiras A, Pokharkar V, Prasad BLV (2012) Gellan gum capped silver nanoparticle dispersions and hydrogels: cytotoxicity and in vitro diffusion studies. Nanoscale 4:563–567

    Article  CAS  PubMed  Google Scholar 

  • Durmus NG, Taylor EN, Kummer KM, Webster TJ (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater 25:5706–5713

    Article  CAS  PubMed  Google Scholar 

  • Filipe P, Silva JN, Silva R, Cirne de Castro JL, Marques Gomes M, Alves LC, Santus R, Pinheiro T (2009) Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 22:266–275

    Article  CAS  PubMed  Google Scholar 

  • Filon FL, Crosera M, Adami G, Bovenzi M, Rossi F, Maina G (2011) Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology 5:493–501

    Article  CAS  PubMed  Google Scholar 

  • Gomathi Devi L, Nagaraj B (2014) Disinfection of Escherichia Coli gram negative Bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism. Photochem Photobiol 90(5):1089–1098

    CAS  PubMed  Google Scholar 

  • Grigore M, Grumezescu A, Holban A, Mogoşanu G, Andronescu E (2017) Collagen-nanoparticles composites for wound healing and infection control. Metals 7:516

    Article  CAS  Google Scholar 

  • Gupta S, Gupta S, Jindal N, Jindal A, Bansal R (2013) Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol Online J 4:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) Codoped with silver, carbon, and sulfur. Langmuir 26:2805–2810

    Article  CAS  PubMed  Google Scholar 

  • Hashim PW, Nia JK, Han G, Ratner D (2019) Nanoparticles in dermatologic surgery. J Am Acad Dermatol S0190-9622(19)30606-1

    Google Scholar 

  • Herskovitz I, Macquhae F, Fox JD, Kirsner RS (2016) Skin movement, wound repair and development of engineered skin. Exp Dermatol 25:99–100

    Article  PubMed  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on Bacteria. Langmuir 24:4140–4144

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Yu F, Park Y-S, Wang J, Shin M-C, Chung HS, Yang VC (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31:9086–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–127

    Article  PubMed  Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue H-J (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52

    Article  CAS  PubMed  Google Scholar 

  • Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12:390–399; quiz 400–401

    PubMed  Google Scholar 

  • Kolarsick PAJ, Kolarsick MA, Goodwin C (2011) Anatomy and physiology of the skin. J Dermatol Nurs Assoc 3:203–213

    Article  Google Scholar 

  • Kuotsu K, Karim K, Mandal A, Biswas N, Guha A, Chatterjee S, Behera M (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37

    Article  CAS  PubMed  Google Scholar 

  • Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30:5969–5978

    Article  CAS  PubMed  Google Scholar 

  • Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012) Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine 7:1175–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leyva-Mendivil MF, Page A, Bressloff NW, Limbert G (2015) A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J Mech Behav Biomed Mater 49:197–219

    Article  PubMed  Google Scholar 

  • Limbert G (2017) Mathematical and computational modelling of skin biophysics: a review. Proc Math Phys Eng Sci 473:20170257

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7: antibacterial ZnO nanoparticles. J Appl Microbiol 107:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A (2013) Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9:4069–4076

    Article  CAS  PubMed  Google Scholar 

  • McGrath JA, Uitto J (2010) Anatomy and organization of human skin. In: Burns T, Breathnach S, Cox N, Griffiths C (eds) Rook’s textbook of dermatology. Wiley-Blackwell, Oxford, pp 1–53

    Google Scholar 

  • Mohandas A, Deepthi S, Biswas R, Jayakumar R (2018) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater 3:267–277

    Article  PubMed  Google Scholar 

  • Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123:264–280

    Article  CAS  PubMed  Google Scholar 

  • Naraginti S, Kumari PL, Das RK, Sivakumar A, Patil SH, Andhalkar VV (2016) Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater Sci Eng C 62:293–300

    Article  CAS  Google Scholar 

  • Ng KW, Lau WM (2015) Skin deep: the basics of human skin structure and drug penetration. In: Dragicevic N, Maibach HI (eds) Percutaneous penetration enhancers chemical methods in penetration enhancement. Springer, Berlin, pp 3–11

    Google Scholar 

  • Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I (2018) Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact 295:38–51

    Article  CAS  PubMed  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Lee W, Slutsky L, Clark RAF, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5:511–520

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Packiyaraj MS, Nigam H, Agarwal GS, Singh B, Patra MK (2014) Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores. Beilstein J Nanotechnol 5:789–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10:1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Patrascu JM, Nedelcu IA, Sonmez M, Ficai D, Ficai A, Vasile BS, Ungureanu C, Albu MG, Andor B, Andronescu E, Rusu LC (2015) Composite scaffolds based on silver nanoparticles for biomedical applications. J Nanomater 2015:1–8

    Article  CAS  Google Scholar 

  • Pratap Reddy M, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386

    Article  CAS  PubMed  Google Scholar 

  • Proksch E, Brandner JM, Jensen J-M (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Article  PubMed  Google Scholar 

  • Prost-Squarcioni C (2006) [Histology of skin and hair follicle]. Med Sci (Paris) 22:131–137

    Article  Google Scholar 

  • Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Delivery Sci Technol 44:421–430

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  PubMed  Google Scholar 

  • Sandri G, Miele D, Faccendini A, Bonferoni MC, Rossi S, Grisoli P, Taglietti A, Ruggeri M, Bruni G, Vigani B, Ferrari F (2019) Chitosan/glycosaminoglycan scaffolds: the role of silver nanoparticles to control microbial infections in wound healing. Polymers 11:1207

    Article  CAS  PubMed Central  Google Scholar 

  • Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 1:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465

    Article  CAS  Google Scholar 

  • Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66:274–280

    Article  CAS  PubMed  Google Scholar 

  • Spoiala A, Voicu G, Ficai D, Ungureanu C, Albu MG, Vasile BS, Ficai A, Andronescu E (2015) Collagen/TiO2-Ag composite nanomaterials for antimicrobial applications. UPB Sci Bull Ser B 77:275–290

    CAS  Google Scholar 

  • Szmyd R, Goralczyk AG, Skalniak L, Cierniak A, Lipert B, Filon FL, Crosera M, Borowczyk J, Laczna E, Drukala J, Klein A, Jura J (2013) Effect of silver nanoparticles on human primary keratinocytes. Biol Chem 394:113

    Article  CAS  PubMed  Google Scholar 

  • Takamiya AS, Monteiro DR, Bernabé DG, Gorup LF, Camargo ER, Gomes-Filho JE, Oliveira SHP, Barbosa DB (2016) In vitro and in vivo toxicity evaluation of colloidal silver nanoparticles used in endodontic treatments. J Endod 42:953–960

    Article  PubMed  Google Scholar 

  • Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8:3016–3027

    Article  CAS  PubMed  Google Scholar 

  • Thakur K, Sharma G, Singh B, Chhibber S, Katare OP (2018) Current state of nanomedicines in the treatment of topical infectious disorders. Recent Pat Antiinfect Drug Discov 13:127–150

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che C-M, Chiu J-F, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–136

    Article  CAS  PubMed  Google Scholar 

  • Tran DT, Salmon R (2011) Potential photocarcinogenic effects of nanoparticle sunscreens: Photocarcinogenic and NP sunscreens. Australas J Dermatol 52:1–6

    Article  PubMed  Google Scholar 

  • Vasanth SB, Kurian GA (2017) Toxicity evaluation of silver nanoparticles synthesized by chemical and green route in different experimental models. Artif Cells Nanomed Biotechnol 45:1721–1727

    Article  CAS  PubMed  Google Scholar 

  • Wang C-C, Wang S, Xia Q, He W, Yin J-J, Fu PP, Li J-H (2013) Phototoxicity of zinc oxide nanoparticles in HaCaT keratinocytes-generation of oxidative DNA damage during UVA and visible light irradiation. J Nanosci Nanotechnol 13:3880–3888

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28:934–938

    Article  CAS  PubMed  Google Scholar 

  • Zan L, Fa W, Peng T, Gong Z (2007) Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on hepatitis B virus. J Photochem Photobiol B Biol 86:165–169

    Article  CAS  Google Scholar 

  • Zhang XF, Shen W, Gurunathan S (2016) Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 17

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Kumar Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A., Singh, V., Sahoo, A.K. (2020). Metal Nanoparticle Based Antibacterial Nanocomposites for Skin Infections. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_2

Download citation

Publish with us

Policies and ethics