Skip to main content

Tillage Machine Control Based on a Vision System for Soil Roughness and Soil Cover Estimation

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11754))

Included in the following conference series:

Abstract

Soil roughness and soil cover are important control variables for plant cropping. A certain level of soil roughness can prevent soil erosion, but to rough soil prevents good plant emergence. Local heterogeneities in the field make it difficult to get homogeneous soil roughness. Residues, like straw, influences the soil roughness estimation and play an important role in preventing soil erosion. We propose a system to control the tillage intensity of a power harrow by varying the driving speed and PTO speed of a tractor. The basis for the control algorithm is a roughness estimation system based on an RGB stereo camera. A soil roughness index is calculated from the reconstructed soil surface point cloud. The vision system also integrates an algorithm to detect soil cover, like residues. Two different machine learning methods for pixel-wise semantic segmentation of soil cover were implemented, an entangled random forest and a convolutional neural net. The pixel-wise classification of each image into soil, living organic matter, dead organic matter and stone allow for mapping of soil cover during tillage. The results of the semantic segmentation of soil cover were compared to ground truth labelled data using the grid method. The soil roughness measurements were validated using the manual sieve analysis. The whole control system was validated in field trials on different locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, K.M., Erbach, D.C.: Secondary tillage tool effect on soil aggregation. Trans. ASAE 35(6), 1771–1776 (1992)

    Article  Google Scholar 

  2. Kirchmeier, H., Geischeder, R., Demmel, M.: Tillage effect and requirements of rotaty harrows with different rotor geometries. Landtechnik 60(4), 196–197 (2005)

    Google Scholar 

  3. Currence, H., Lovely, W.: The analysis of soil surface roughness. Trans. ASAE 13, 710–714 (1970)

    Article  Google Scholar 

  4. Marinello, F., Pezzuolo, A., Gasparini, F., Arvidsson, J., Sartori, L.: Application of the Kinect sensor for dynamic soil surface characterization. Precis. Agric. 16, 601–612 (2015)

    Article  Google Scholar 

  5. Taconet, O., Ciarletti, V.: Estimating soil roughness indices on a ridge-and-furrow surface using stereo photogrammetry. Soil Tillage Res. 93, 64–76 (2007)

    Article  Google Scholar 

  6. Riegler, T., Rechberger, C., Handler, F., Prankl, H.: Image processing system for evaluation of tillage quality. Landtechnik 69(3), 125–130 (2014)

    Google Scholar 

  7. de Obade, V.P.: Review article: remote sensing, surface residue cover and tillage practice. J. Environ. Prot. 3, 211–217 (2012)

    Article  Google Scholar 

  8. Pforte, F., Wilhelm, B., Hensel, O.: Evaluation of an online approach for determination of percentage residue cover. Biosyst. Eng. 112, 121–129 (2012)

    Article  Google Scholar 

  9. Campillo, C., Prieto, M.H., Daza, C., Monino, M.J., Garcia, M.I.: Using digital images to characterize canopy coverage and light interception in a processing tomato crop. HortScience 43, 1780–1786 (2008)

    Article  Google Scholar 

  10. Kırcı, M., Güneş, E. O., Çakır, Y.: Vegetation measurement using image processing methods. In The Third International Conference on Agro-Geoinformatics (2014)

    Google Scholar 

  11. Guerrero, J.M., Pajares, G., Montalvo, M., Romeo, J., Guijarro, M.: Support Vector Machines for crop/weeds identification in maize fields. Expert Syst. Appl. 39(12), 11149–11155 (2012)

    Article  Google Scholar 

  12. Mortensen, A. K., Dyrmann, M., Karstoft, H., Nyholm Jørgensen, R., Gislum, R.: Semantic Segmentation of Mixed Crops using Deep Convolutional Neural Network. In: CIGR-AgEng Conference (2016)

    Google Scholar 

  13. Riegler-Nurscher, P., Prankl, J., Bauer, T., Strauss, P., Prankl, H.: A machine learning approach for pixel wise classification of residue and vegetation cover under field conditions. Biosyst. Eng. 169, 188–198 (2018)

    Article  Google Scholar 

  14. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  15. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 552–568 (2018)

    Chapter  Google Scholar 

  16. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. (ITS) 19(1), 263–272 (2018)

    Article  Google Scholar 

  17. Milioto, A., C. Stachniss, C.: Bonnet: an open-source training and deployment framework for semantic segmentation in robotics using CNNs. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA) (2019)

    Google Scholar 

  18. OpenCV library. http://opencv.org/. Accessed 9 May 2019

  19. PCL library. http://www.pointclouds.org/. Accessed 9 May 2019

  20. Chebrolu, N., Lottes, P., Schaefer, A., Winterhalter, W., Burgard, W., Stachniss, C.: Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields. Int. J. Robot. Res. 36(10), 1045–1052 (2017)

    Article  Google Scholar 

  21. Sandri, R., Anken, T., Hilfiker, T., Sartori, L., Bollhalder, H.: Comparison of methods for determining cloddiness in seedbed preparation. Soil Tillage Res. 45, 75–90 (1998)

    Article  Google Scholar 

  22. Skovsen, S., et al.: Estimation of the botanical composition of clover-grass leys from RGB images using data simulation and fully convolutional neural networks. Sensors 17(12), 2930 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The research leading to this work has received funding from the Lower Austrian government (WST3-T-140/002-2014). As well as from the Austrian Research Promotion Agency under the program “Bridge 1”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Riegler-Nurscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riegler-Nurscher, P., Prankl, J., Vincze, M. (2019). Tillage Machine Control Based on a Vision System for Soil Roughness and Soil Cover Estimation. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham. https://doi.org/10.1007/978-3-030-34995-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34995-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34994-3

  • Online ISBN: 978-3-030-34995-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics