Skip to main content

Hormonal Regulation of Avian Auditory Processing

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 71))

Abstract

This chapter explores the current understanding of the hormonal regulation of auditory function in songbirds by focusing on three themes. The first section is an overview of seasonal changes in the auditory pathway that are regulated by hormones. Next, the concept of the songbird brain as both a source and a target of neuromodulatory steroid hormones is discussed in the context of auditory function. Finally, the way that hormones interact with classical neurotransmitter systems (the biogenic amines dopamine, norepinephrine, and serotonin) to modulate auditory processing is presented. Reflecting on the sum total of these studies, understanding of the hormonal regulation of auditory function in songbirds has progressed considerably in the past few decades. More broadly, the field of songbird neuroethology has been continually propelled by an integrative perspective that examines the development, evolution, and hormonal modulation of neural circuits for song production, learning, and processing. This holistic approach to songbird neuroethology research, inspired by Niko Tinbergen and Peter Marler, will continue to be important as an increasing number of tools become available to explore the brain and behavior of songbirds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abizaid A, Mezei G, Horvath TL (2004) Estradiol enhances light-induced expression of transcription factors in the SCN. Brain Res 1010(1–2):35–44

    Article  CAS  PubMed  Google Scholar 

  • Acharya KD, Veney SL (2012) Characterization of the G-protein-coupled membrane-bound estrogen receptor GPR30 in the zebra finch brain reveals a sex difference in gene and protein expression. Dev Neurobiol 72(11):1433–1446

    Article  CAS  PubMed  Google Scholar 

  • Adkins-Regan E (2005) Hormones and animal social behavior. Princeton University Press, Princeton

    Google Scholar 

  • Alward BA, Balthazart J, Ball GF (2013) Differential effects of global versus local testosterone on singing behavior and its underlying neural substrate. Proc Natl Acad Sci U S A 110(48):19573–19578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arch VS, Narins PM (2009) Sexual hearing: the influence of sex hormones on acoustic communication in frogs. Hear Res 252(1–2):15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AP, Nottebohm F, Pfaff DW (1976) Hormone concentrating cells in vocal control and other areas of brain of zebra finch (Poephila-Guttata). J Comp Neurol 165(4):487–511

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Riters LV, Balthazart J (2002) Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front Neuroendocrinol 23(2):137–178

    Article  CAS  PubMed  Google Scholar 

  • Ball, G. F., Castelino, C. B., Maney, D. L., Appeltants, D., & Balthazart, J. (2003). The activation of birdsong by testosterone - Multiple sites of action and role of ascending catecholamine projections Steroids and the Nervous System, 1007, 211–231

    Google Scholar 

  • Balthazart J, Ball GF (2006) Is brain estradiol a hormone or a neurotransmitter? Trends in Neurosci 29(5):241–249

    Article  CAS  Google Scholar 

  • Balthazart J, Ball GF (eds) (2012) Brain aromatase, estrogens, and behavior. Oxford University Press, Oxford

    Google Scholar 

  • Balthazart J, Choleris E, Remage-Healey L (2018) Steroids and the brain: 50years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Horm Behav 99:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay SR, Harding CF (1988) Androstenedione modulation of monoamine levels and turnover in hypothalamic and vocal control nuclei in the male zebra finch: steroid effects on brain monoamines. Brain Res 459(2):333–343

    Article  CAS  PubMed  Google Scholar 

  • Barclay SR, Harding CF (1990) Differential modulation of monoamine levels and turnover rates by estrogen and/or androgen in hypothalamic and vocal control nuclei of male zebra finches. Brain Res 523(2):251–262

    Article  CAS  PubMed  Google Scholar 

  • Bentley G (2000) Stimulatory effects on the reproductive axis in female songbirds by conspecific and heterospecific male song. Horm Behav 37(3):179–189

    Article  CAS  PubMed  Google Scholar 

  • Bernard DJ, Bentley GE, Balthazart J, Turek FW, Ball GF (1999) Androgen receptor, estrogen receptor alpha, and estrogen receptor beta show distinct patterns of expression in forebrain song control nuclei of European starlings. Endocrinol 140(10):4633–4643

    Article  CAS  Google Scholar 

  • Boyd SK, Moore FL (1990) Evidence for gaba involvement in stress-induced inhibition of male amphibian sexual-behavior. Horm Behav 24(1):128–138

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA (2004) Plasticity of the adult avian song control system. Behavioral Neurobiology of Birdsong 1016:560–585

    CAS  Google Scholar 

  • Brenowitz EA, Lent K (2002) Act locally and think globally: intracerebral testosterone implants induce seasonal-like growth of adult avian song control circuits. Proc Natl Acad Sci 99(19):12421–12426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenowitz EA, Nalls B, Wingfield JC, Kroodsma DE (1991) Seasonal-changes in avian song nuclei without seasonal-changes in song repertoire. J Neurosci 11(5):1367–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caras ML, Remage-Healey L (2016) Modulation of peripheral and central auditory processing by estrogens in birds. In: Bass AH (ed) Hearing and hormones, vol 57. Springer, Heidelberg, pp 77–100

    Chapter  Google Scholar 

  • Caras ML, Brenowitz E, Rubel EW (2010) Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(8):581–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Caras ML, O’Brien M, Brenowitz EA, Rubel EW (2012) Estradiol selectively enhances auditory function in avian forebrain neurons. J Neurosci 32(49):17597–17611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caras ML, Sen K, Rubel EW, Brenowitz EA (2015) Seasonal plasticity of precise spike timing in the avian auditory system. J Neurosci 35(8):3431–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardin JA, Schmidt MF (2004) Noradrenergic inputs mediate state dependence of auditory responses in the avian song system. J Neurosci 24(35):7745–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelino CB, Schmidt MF (2010) What birdsong can teach us about the central noradrenergic system. J Chem Neuroanat 39(2):96–111

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, M., & Burmeister, S. S. (2015). Effects of estradiol on neural responses to social signals in female tungara frogs. J Exp Biol, 218(Pt 22), 3671–3677

    Google Scholar 

  • Chao A, Paon A, Remage-Healey L (2014) Dynamic variation in forebrain estradiol levels during song learning. Dev Neurobiol

    Google Scholar 

  • Chew SJ, Mello C, Nottebohm F, Jarvis E, Vicario DS (1995) Decrements in auditory responses to a repeated conspecific song are long-lasting and require 2 periods of protein-synthesis in the songbird forebrain. Proc Natl Acad Sci 92(8):3406–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crimins JL, Wang AC, Yuk F, Puri R, Janssen WGM, Hara Y, Rapp PR, Morrison JH (2017) Diverse synaptic distributions of G protein-coupled estrogen receptor 1 in monkey prefrontal cortex with aging and menopause. Cereb Cortex 27(3):2022–2033

    PubMed  Google Scholar 

  • De Groof G, Poirier C, George I, Hausberger M, Van der Linden A (2013) Functional changes between seasons in the male songbird auditory forebrain. Front Behav Neurosci 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  • De Groof G, Balthazart J, Cornil CA, Van der Linden A (2017) Topography and lateralized effect of acute aromatase inhibition on auditory processing in a seasonal songbird. J Neurosci 37(16):4243–4254

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Negro C, Edeline JM (2002) Sex and season influence the proportion of thin spike cells in the canary HVc. Neuroreport 13(16):2005–2009

    Article  PubMed  Google Scholar 

  • Del Negro C, Lehongre K, Edeline JM (2005) Selectivity of canary HVC neurons for the bird’s own song: modulation by photoperiodic conditions. J Neurosci 25(20):4952–4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foradori C, Weiser M, Handa R (2007) Non-genomic actions of androgens. Front Neuroendocrinol

    Google Scholar 

  • Forlano PM, Deitcher DL, Myers DA, Bass AH (2001) Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source. J Neurosci 21(22):8943–8955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forlano PM, Schlinger BA, Bass AH (2006) Brain aromatase: new lessons from non-mammalian model systems. Front Neuroendocrinol 27(3):247–274

    Article  CAS  PubMed  Google Scholar 

  • Fusani L, Van’t Hof T, Hutchison JB, Gahr M (2000) Seasonal expression of androgen receptors, estrogen receptors, and aromatase in the canary brain in relation to circulating androgens and estrogens. J Neurobiol 43(3):254–268

    Article  CAS  PubMed  Google Scholar 

  • Gall MD, Salameh TS, Lucas JR (2013) Songbird frequency selectivity and temporal resolution vary with sex and season. Proc Biol Sci 280(1751):20122296

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentner TQ, Hulse SH (2000) Female European starling preference and choice for variation in conspecific male song. Anim Behav 59(2):443–458

    Article  CAS  PubMed  Google Scholar 

  • Gentner TQ, Hulse SH, Duffy D, Ball GF (2001) Response biases in auditory forebrain regions of female songbirds following exposure to sexually relevant variation in male song. J Neurobiol 46(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Gobes SMH, Bolhuis JJ (2007) Birdsong memory: a neural dissociation between song recognition and production. Curr Biol 17(9):789–793

    Article  CAS  PubMed  Google Scholar 

  • Heimovics SA, Ferris JK, Soma KK (2015) Non-invasive administration of 17beta-estradiol rapidly increases aggressive behavior in non-breeding, but not breeding, male song sparrows. Horm Behav 69:31–38

    Article  CAS  PubMed  Google Scholar 

  • Henry KS, Lucas JR (2009) Vocally correlated seasonal auditory variation in the house sparrow (Passer domesticus). J Exp Biol 212(23):3817–3822

    Article  CAS  PubMed  Google Scholar 

  • Hofmann HA, Renn SC, Rubenstein DR (2016) Introduction to symposium: new frontiers in the integrative study of animal behavior: nothing in neuroscience makes sense except in the light of behavior. Int Comp Biol 56(6):1192–1196

    Article  Google Scholar 

  • Holveck MJ, Riebel K (2007) Preferred songs predict preferred males: consistency and repeatability of zebra finch females across three test contexts. Anim Behav 74:297–309

    Article  Google Scholar 

  • Ikeda M, Rensel MA, Schlinger BA, Remage-Healey L (2014) In vivo detection of fluctuating brain steroid levels in zebra finches. Cold Spring Harb Protoc

    Google Scholar 

  • Ikeda MZ, Jeon SD, Cowell RA, Remage-Healey L (2015) Norepinephrine modulates coding of complex vocalizations in the songbird auditory cortex independent of local neuroestrogen synthesis. J Neurosci 35(25):9356–9368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabelik D, Schrock SE, Ayres LC, Goodson JL (2011) Estrogenic regulation of dopaminergic neurons in the opportunistically breeding zebra finch. Gen Comp Endocrinol 173(1):96–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MJ, Moss RL, Dudley CA (1976) Differential sensitivity of preoptic-septal neurons to microelectrophoresed estrogen during the estrous cycle. Brain Res 114(1):152–157

    Article  CAS  PubMed  Google Scholar 

  • Krentzel AA, Macedo-Lima M, Ikeda MZ, Remage-Healey L (2018) A membrane G-protein coupled estrogen receptor is necessary but not sufficient for sex-differences in zebra finch auditory coding. Endocrinology 159(3):1360–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lattin CR, Stabile FA, Carson RE (2017) Estradiol modulates neural response to conspecific and heterospecific song in female house sparrows: an in vivo positron emission tomography study. PLoS One 12(8):e0182875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc MM, Goode CT, MacDougall-Shackleton EA, Maney DL (2007) Estradiol modulates brainstem catecholaminergic cell groups and projections to the auditory forebrain in a female songbird. Brain Res 1171:93–103

    Article  CAS  PubMed  Google Scholar 

  • Lee V, Pawlisch BA, Macedo-Lima M, Remage-Healey L (2018) Norepinephrine enhances song responsiveness and encoding in the auditory forebrain of male zebra finches. J Neurophysiol 119(1):209–220

    Article  PubMed  Google Scholar 

  • London SE, Monks DA, Wade J, Schlinger BA (2006) Widespread capacity for steroid synthesis in the avian brain and song system. Endocrinol 147(12):5975–5987

    Article  CAS  Google Scholar 

  • Lucas JR, Freeberg TM, Krishnan A, Long GR (2002) A comparative study of avian auditory brainstem responses: correlations with phylogeny and vocal complexity, and seasonal effects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188(11–12):981–992

    CAS  PubMed  Google Scholar 

  • Lynch KS, Wilczynski W (2008) Reproductive hormones modify reception of species-typical communication signals in a female anuran. Brain Behav Evol 71(2):143–150

    Article  PubMed  Google Scholar 

  • Lynch KS, Diekamp B, Ball GF (2012) Colocalization of immediate early genes in catecholamine cells after song exposure in female zebra finches (Taeniopygia guttata). Brain Behav Evol 79(4):252–260

    Article  PubMed  Google Scholar 

  • Maney DL, Rodriguez-Saltos CA (2016) Hormones and the incentive salience of birdsong. In: Bass AH (ed) Hearing and hormones, vol 57. Springer, Heidelberg, pp 101–132

    Chapter  Google Scholar 

  • Maney DL, Richardson RD, Wingfield JC (1997) Central administration of chicken gonadotropin-releasing hormone-II enhances courtship behavior in a female sparrow. Horm Behav 32(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Maney DL, Cho E, Goode CT (2006) Estrogen-dependent selectivity of genomic responses to birdsong. Eur J Neurosci 23(6):1523–1529

    Article  PubMed  Google Scholar 

  • Mangiamele LA, Gomez JR, Curtis NJ, Thompson RR (2017) GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J Comp Neurol 525(2):252–270

    Article  CAS  PubMed  Google Scholar 

  • Marler P (2008) Birdsong and monkey talk: an ethological journey. In: Zeigler HP, Marler P (eds) Neuroscience of birdsong. Cambridge University Press, New York, pp 449–462

    Google Scholar 

  • Marler P, Peters S, Wingfield J (1987) Correlations between song acquisition, song production, and plasma-levels of testosterone and estradiol in sparrows. J Neurobiol 18(6):531–548

    Article  CAS  PubMed  Google Scholar 

  • Marler P, Peters S, Ball GF, Dufty AM, Wingfield JC (1988) The role of sex steroids in the acquisition and production of birdsong. Nature 336(6201):770–772

    Article  CAS  PubMed  Google Scholar 

  • Maruska, K. P., Becker, L., Neboori, A., & Fernald, R. D. (2013). Social descent with territory loss causes rapid behavioral, endocrine and transcriptional changes in the brain. J Exp Biol, 216(Pt 19), 3656–3666

    Google Scholar 

  • Matragrano LL, Sanford SE, Salvante KG, Beaulieu M, Sockman KW, Maney DL (2012a) Estradiol-dependent modulation of serotonergic markers in auditory areas of a seasonally breeding songbird. Behav Neurosci 126(1):110–122

    Article  CAS  PubMed  Google Scholar 

  • Matragrano LL, Beaulieu M, Phillip JO, Rae AI, Sanford SE, Sockman KW, Maney DL (2012b) Rapid effects of hearing song on catecholaminergic activity in the songbird auditory pathway. PLoS One 7(6):e39388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meitzen J, Perkel DJ, Brenowitz EA (2007a) Seasonal changes in intrinsic electrophysiological activity of song control neurons in wild song sparrows. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(6):677–683

    Article  PubMed  Google Scholar 

  • Meitzen J, Moore IT, Lent K, Brenowitz EA, Perkel DJ (2007b) Steroid hormones act transsynaptically within the forebrain to regulate neuronal phenotype and song stereotypy. J Neurosci 27(44):12045–12057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello CV, Vicario DS, Clayton DF (1992) Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci U S A 89(15):6818–6822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzdorf R, Gahr M, Fusani L (1999) Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J Comp Neurol 407(1):115–129

    Article  CAS  PubMed  Google Scholar 

  • Naftolin, F., Ryan, K. J., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z., Kuhn, M., White, R. J., Takaoka, Y., & Wolin, L. (1975). The formation of estrogens by central neuroendocrine tissues. Recent Progress in Hormone Research, Proceedings of the 1996 Conference, Vol 52, 31, 295–319

    Google Scholar 

  • Noirot IC, Adler HJ, Cornil CA, Harada N, Dooling RJ, Balthazart J, Ball GF (2009) Presence of aromatase and estrogen receptor alpha in the inner ear of zebra finches. Hear Res 252(1–2):49–55

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F, Arnold A (1976) Sexual dimorphism in vocal control areas of the songbird brain. Science 194(4261):211–213

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F, Nottebohm ME, Crane LA, Wingfield JC (1987) Seasonal-changes in gonadal hormone levels of adult male canaries and their relation to song. Behav Neural Biol 47(2):197–211

    Article  CAS  PubMed  Google Scholar 

  • Okuyama T, Suehiro Y, Imada H, Shimada A, Naruse K, Takeda H, Kubo T, Takeuchi H (2011) Induction of c-fos transcription in the medaka brain (Oryzias latipes) in response to mating stimuli. Biochem Biophys Res Commun 404(1):453–457

    Article  CAS  PubMed  Google Scholar 

  • Orchinik M, Murray TF, Moore FL (1991) A corticosteroid receptor in neuronal membranes. Science 252(5014):1848–1851

    Article  CAS  PubMed  Google Scholar 

  • Pawlisch BA, Remage-Healey L (2015) Neuroestrogen signaling in the songbird auditory cortex propagates into a sensorimotor network via an ‘interface’ nucleus. Neuroscience 284:522–535

    Article  CAS  PubMed  Google Scholar 

  • Pawlisch BA, Riters LV (2010) Selective behavioral responses to male song are affected by the dopamine agonist GBR-12909 in female european starlings (Sturnus vulgaris). Brain Res 1353:113–124

    Article  CAS  PubMed  Google Scholar 

  • Peterson RS, Yarram L, Schlinger BA, Saldanha CJ (2005) Aromatase is pre-synaptic and sexually dimorphic in the adult zebra finch brain. Proc Roy Soc B-Biol Sci 272(1576):2089–2096

    Article  CAS  Google Scholar 

  • Petrulis A (2013) Chemosignals, hormones and mammalian reproduction. Horm Behav 63(5):723–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillmore LS, Veysey AS, Roach SP (2011) Zenk expression in auditory regions changes with breeding condition in male black-capped chickadees (Poecile atricapillus). Behav Brain Res 225(2):464–472

    Article  PubMed  Google Scholar 

  • Reddy VV, Naftolin F, Ryan KJ (1973) Aromatization in the central nervous system of rabbits: effects of castration and hormone treatment. Endocrinology 92(2):589–594

    Article  CAS  PubMed  Google Scholar 

  • Remage-Healey L (2014a) Frank Beach award winner: steroids as neuromodulators of brain circuits and behavior. Horm Behav 66(3):552–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remage-Healey, L. (2014b)

    Google Scholar 

  • Remage-Healey L, Joshi NR (2012) Changing neuroestrogens within the auditory forebrain rapidly transform stimulus selectivity in a downstream sensorimotor nucleus. J Neurosci 32(24):8231–8241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remage-Healey L, Maidment NT, Schlinger BA (2008) Forebrain steroid levels fluctuate rapidly during social interactions. Nat Neurosci 11(11):1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remage-Healey L, Coleman MJ, Oyama RK, Schlinger BA (2010) Brain estrogens rapidly strengthen auditory encoding and guide song preference in a songbird. Proc Natl Acad Sci U S A 107(8):3852–3857

    Article  PubMed  PubMed Central  Google Scholar 

  • Remage-Healey L, Dong SM, Chao A, Schlinger BA (2012) Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J Neurophysiol 107(6):1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Remage-Healey L, Jeon SD, Joshi NR (2013) Recent evidence for rapid synthesis and action of oestrogens during auditory processing in a songbird. J Neuroendocrinol 25(11):1024–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riebel K, Smallegange IM, Terpstra NJ, Bolhuis JJ (2002) Sexual equality in zebra finch song preference: evidence for a dissociation between song recognition and production learning. Proc Roy Soc B-Biol Sci 269(1492):729–733

    Article  Google Scholar 

  • Sakata, J. T., & Vehrencamp, S. L. (2012). Integrating perspectives on vocal performance and consistency. J Exp Biol, 215(Pt 2), 201–209

    Google Scholar 

  • Saldanha CJ, Remage-Healey L, Schlinger BA (2013) Neuroanatomical distribution of aromatase in birds: cellular and subcellular analyses. In: Balthazart GBJ (ed) Brain aromatase, estrogens and behavior. Oxford, UK, Oxford, pp 100–114

    Google Scholar 

  • Sanford SE, Lange HS, Maney DL (2010) Topography of estradiol-modulated genomic responses in the songbird auditory forebrain. Dev Neurobiol 70(2):73–86

    CAS  PubMed  Google Scholar 

  • Schlinger BA, Arnold AP (1992) Circulating estrogens in a male songbird originate in the brain. Proc Natl Acad Sci U S A 89(16):7650–7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlinger B, Brenowitz EA (2008) Neural and hormonal control of birdsong. In: Pfaff DW (ed) Hormones, Brain and Behavior, vol 2. Elsevier, pp 897–941

    Google Scholar 

  • Schlinger BA, Remage-Healey L (2012) Neurosteroidogenesis: insights from studies of songbirds. J Neuroendocrinol 24(1):16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seredynski AL, Balthazart J, Ball GF, Cornil CA (2015) Estrogen receptor beta activation rapidly modulates male sexual motivation through the transactivation of metabotropic glutamate receptor 1a. J Neurosci 35(38):13110–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisneros JA, Bass AH (2003) Seasonal plasticity of peripheral auditory frequency sensitivity. J Neurosci 23(3):1049–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 305(5682):404–407

    Article  CAS  PubMed  Google Scholar 

  • Sizemore M, Perkel DJ (2008) Noradrenergic and GABAB receptor activation differentially modulate inputs to the premotor nucleus RA in zebra finches. J Neurophysiol 100(1):8–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GT, Brenowitz EA, Beecher MD, Wingfield JC (1997) Seasonal changes in testosterone, neural attributes of song control nuclei, and song structure in wild songbirds. J Neurosci 17(15):6001–6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soma KK, Schlinger BA, Wingfield JC, Saldanha CJ (2003) Brain aromatase, 5 alpha-reductase, and 5 beta-reductase change seasonally in wild male song sparrows: relationship to aggressive and sexual behavior. J Neurobiol 56(3):209–221

    Article  CAS  PubMed  Google Scholar 

  • Soma KK, Bindra RK, Gee J, Wingfield JC, Schlinger BA (1999) Androgen-metabolizing enzymes show region-specific changes across the breeding season in the brain of a wild songbird. J Neurobiol 41(2):176–188

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DP, Evans PD (2013) G-protein oestrogen receptor 1: trials and tribulations of a membrane oestrogen receptor. J Neuroendocrinol 25(11):1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Tachikawa KS, Yoshihara Y, Kuroda KO (2013) Behavioral transition from attack to parenting in male mice: a crucial role of the vomeronasal system. J Neurosci 33(12):5120–5126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchernichovski O, Schwabl H, Nottebohm F (1998) Context determines the sex appeal of male zebra finch song. Anim Behav 55:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Clarendon Press, Oxford Eng

    Google Scholar 

  • Vahaba DM, Remage-Healey L (2015) Brain estrogen production and the encoding of recent experience. Curr Op Behav Sci 6:148–153

    Article  Google Scholar 

  • Vahaba DM, Remage-Healey L (2018) Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: Evidence from songbirds. Horm Behav 104:77–87. https://doi.org/10.1016/j.yhbeh.2018.03.007

  • Vahaba DM, Macedo-Lima M, Remage-Healey L (2017) Sensory coding and sensitivity to local estrogens shift during critical period milestones in the auditory cortex of male songbirds. eNeuro 4(6)

    Google Scholar 

  • Vasudevan N, Pfaff DW (2008) Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 29(2):238–257

    Article  CAS  PubMed  Google Scholar 

  • Velho TA, Lu K, Ribeiro S, Pinaud R, Vicario D, Mello CV (2012) Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds. PLoS One 7(5):e36276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas A, Harding C, McGowan J, Snare R, Bogdan D (2008) Noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), treatment eliminates estrogenic effects on song responsiveness in female zebra finches (Taeniopygia guttata). Behav Neurosci 122(5):1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Wingfield JC, Farner DS (1976) Plasma Lh and sex steroids in whitecrowned sparrow, Zonotrichia-Leucophrys-Pugetensis. Amer Zool 16(2):257–257

    Google Scholar 

  • Wingfield JC, Ball GF, Dufty AM, Hegner RE, Ramenofsky M (1987) Testosterone and aggression in birds. Amer Sci 75(6):602–608

    Google Scholar 

  • Woolley SC, Doupe AJ (2008) Social context-induced song variation affects female behavior and gene expression. PLoS Biol 6(3):e62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigmond RE, Notteboh F, Pfaff DW (1973) Androgen-concentrating cells in midbrain of a songbird. Science 179(4077):1005–1007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Preparation of this chapter was supported in part by NIH R01NS082179 and NSF IOS 1354906.

Compliance with Ethics Requirements

Luke Remage-Healey declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Remage-Healey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Remage-Healey, L. (2020). Hormonal Regulation of Avian Auditory Processing. In: Sakata, J., Woolley, S., Fay, R., Popper, A. (eds) The Neuroethology of Birdsong. Springer Handbook of Auditory Research, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-030-34683-6_6

Download citation

Publish with us

Policies and ethics