Skip to main content

On the Non-existence of Short Vectors in Random Module Lattices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11922))

Abstract

Recently, Lyubashevsky & Seiler (Eurocrypt 2018) showed that small polynomials in the cyclotomic ring \(\mathbb {Z}_q[X]/(X^n+1)\), where n is a power of two, are invertible under special congruence conditions on prime modulus q. This result has been used to prove certain security properties of lattice-based constructions against unbounded adversaries. Unfortunately, due to the special conditions, working over the corresponding cyclotomic ring does not allow for efficient use of the Number Theoretic Transform (NTT) algorithm for fast multiplication of polynomials and hence, the schemes become less practical.

In this paper, we present how to overcome this limitation by analysing zeroes in the Chinese Remainder (or NTT) representation of small polynomials. As a result, we provide upper bounds on the probabilities related to the (non)-existence of a short vector in a random module lattice with no assumptions on the prime modulus. We apply our results, along with the generic framework by Kiltz et al. (Eurocrypt 2018), to a number of lattice-based Fiat-Shamir signatures so they can both enjoy tight security in the quantum random oracle model and support fast multiplication algorithms (at the cost of slightly larger public keys and signatures), such as the Bai-Galbraith signature scheme (CT-RSA 2014), \(\mathsf {Dilithium\text {-}QROM}\) (Kiltz et al., Eurocrypt 2018) and \(\mathsf {qTESLA}\) (Alkim et al., PQCrypto 2017). Our techniques can also be applied to prove that recent commitment schemes by Baum et al. (SCN 2018) are statistically binding with no additional assumptions on q.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Lyubashevsky and Seiler [19] showed, however, how to combine the FFT algorithm and Karatsuba multiplication in order to multiply in partially-splitting rings faster.

  2. 2.

    Alternatively, we call it “FFT/NTT representation” in the fully-splitting case.

  3. 3.

    This technique has already been investigated in the literature for e.g. constructing provably secure variants of NTRUEncrypt [25].

  4. 4.

    We present it in the full version of this paper [20].

  5. 5.

    What we mean by “small” is that the polynomial has small infinity or Euclidean norm.

  6. 6.

    Namely, for each \(a_i\) we define a corresponding column vector \((a'_{i,1},...,a'_{i,d})\), where \(a'_{i,j}\) is the element of \(\mathbb {Z}_q[X]/ (f_j(X))\), such that \(a_i \equiv a'_{i,j} \ (\mathrm {mod}\ f_j(X))\), for \(j \in [d]\).

  7. 7.

    In the example above, \(W_1\) is represented by the set \(\{X^j : j \in [2n]\}\). Indeed, \(|\mathsf {Zero}(X^j - X^k)| < 1\) for all distinct jk.

  8. 8.

    Note that this technique can also be used for \(W_1\) as long as \(q^{1/d}\) is large enough.

  9. 9.

    This can be proven similarly as in [5] by putting a box of side-length 1 centered on every integer point and checking that the ball is completely covered by these boxes.

  10. 10.

    For readers not familiar with definitions of lossy and canonical identification schemes, we provide all necessary background in [20].

References

  1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34

    Chapter  Google Scholar 

  2. Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_9

    Chapter  Google Scholar 

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343. USENIX Association, August 2016

    Google Scholar 

  4. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2

    Chapter  Google Scholar 

  5. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20

    Chapter  Google Scholar 

  6. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_29

    Chapter  Google Scholar 

  7. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learning with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp. 305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_16

    Chapter  Google Scholar 

  8. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  9. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - Dilithium: digital signatures from module lattices. IACR Cryptology ePrint Archive 2017, 633 (2017). To appear in TCHES 2018

    Google Scholar 

  10. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31

    Chapter  MATH  Google Scholar 

  11. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_18

    Chapter  MATH  Google Scholar 

  12. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

    Article  MathSciNet  Google Scholar 

  13. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  14. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  15. Lyubashevsky, V., et al.: Crystals-dilithium. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  16. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13

    Chapter  Google Scholar 

  17. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_11

    Chapter  Google Scholar 

  18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  19. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8

    Chapter  MATH  Google Scholar 

  20. Nguyen, N.K.: On the non-existence of short vectors in random module lattices. Cryptology ePrint Archive, Report 2019/973 (2019). https://eprint.iacr.org/2019/973

  21. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8

    Chapter  Google Scholar 

  22. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case connection factors. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 478–487. ACM Press, June 2007

    Google Scholar 

  23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005

    Google Scholar 

  24. Schwabe, P., et al.: Crystals-kyber. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  25. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as secure as standard worst-case problems over ideal lattices. Cryptology ePrint Archive, Report 2013/004 (2013). http://eprint.iacr.org/2013/004

  26. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    Chapter  Google Scholar 

  27. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_3

    Chapter  Google Scholar 

Download references

Acknowledgments

The author would like to thank Vadim Lyubashevsky for fruitful discussions and anonymous reviewers for their useful comments. This work was supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Khanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, N.K. (2019). On the Non-existence of Short Vectors in Random Module Lattices. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11922. Springer, Cham. https://doi.org/10.1007/978-3-030-34621-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34621-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34620-1

  • Online ISBN: 978-3-030-34621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics