Skip to main content

Nano-Based Drug Delivery Tools for Personalized Nanomedicine

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanobiotechnology is a branch of science where nanodevices are developed through nanotechnology and are applied to study the biological system. The word “nano” is used for measurement of things on a nanoscale, and the technology thereof used for formation of such compounds is known as “nanotechnology.” Nanomaterials range approximately from 1 to 100 nm. It is an exciting area for researchers as it is applied in different biological fields like reengineered medicine, medical reports, and drug delivery systems. Nanotechnology has allowed humans to gain in-depth information about materials to create, control, manipulate, characterize, and engineer nanomaterials. It provides an unrivaled platform to improve the treatment of diseases. These nanotools can act as probes, sensors, or vehicles for delivery of compounds, drugs, and biomolecules into the cell. Personalized nanomedicine consists of treatment strategies where specific treatment is advised to patients according to their genotype, phenotype, and environmental conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arya G, Das M, Sahoo SK (2018) Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed Pharmacother 102:555–566

    Article  CAS  Google Scholar 

  • Cevc G, Vierl U (2010) Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release 141(3):277–299

    Article  CAS  Google Scholar 

  • Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J et al (2015) Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9(4):4173–4181

    Article  CAS  Google Scholar 

  • Dai L, Zhu W, Si C, Lei J (2018) “Nano-ginseng” for enhanced cytotoxicity against cancer cells. Int J Mol Sci 19(2):627

    Article  Google Scholar 

  • Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wu C (2014) Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 9(1):684

    Article  Google Scholar 

  • Dodd CH, Hsu HC, Chu WJ, Yang P, Zhang HG, Mountz JD Jr et al (2001) Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived super paramagnetic nanoparticles. J Immunol Methods 256(1–2):89–105

    Article  CAS  Google Scholar 

  • Duan L, Wang Y, Li SSC, Wan Z, Zhai J (2005) Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method. BMC Infect Dis 5(1):53

    Article  Google Scholar 

  • Englander L, Friedman A (2010) Nitric oxide nanoparticle technology: a novel antimicrobial agent in the context of current treatment of skin and soft tissue infection. J Clin Aesthet Dermatol 3(6):45

    PubMed  PubMed Central  Google Scholar 

  • Fornaguera C, García-Celma MJ (2017) Personalized nanomedicine: a revolution at the nanoscale. J Pers Med 7(4):12

    Article  Google Scholar 

  • Ge Y, Li S, Wang S, Moore R (eds) (2014) Nanomedicine: Principles and Perspectives. Springer, New York

    Google Scholar 

  • Hanaee H, Ghourchian H, Ziaee AA (2007) Nanoparticle-based electrochemical detection of hepatitis B virus using stripping chronopotentiometry. Anal Biochem 370(2):195–200

    Article  CAS  Google Scholar 

  • Kansara K, Patel P, Shukla RK, Pandya A, Shanker R, Kumar A, Dhawan A (2018) Synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle. Int J Nanomedicine 13:79

    Article  CAS  Google Scholar 

  • Ladju RB, Pascut D, Massi MN, Tiribelli C, Sukowati CH (2018) Aptamer: a potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget 9(2):2951

    Article  Google Scholar 

  • Lee JH, Seo HS, Kwon JH, Kim HT, Kwon KC, Sim SJ et al (2015) Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles. Biosens Bioelectron 69:213–225

    Article  CAS  Google Scholar 

  • Liu Y, Li L, Li L, Zhou Z, Wang F, Xiong X, Huang Y (2018) Programmed drug delivery system based on optimized “size decrease and hydrophilicity/hydrophobicity transformation” for enhanced hepatocellular carcinoma therapy of doxorubicin. Nanomedicine 14(4):1111–1122

    Article  CAS  Google Scholar 

  • Mahajan SD, Aalinkeel R, Law WC, Reynolds JL, Nair BB, Sykes DE et al (2012) Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 7:5301

    Article  CAS  Google Scholar 

  • Nelson CE, Kim AJ, Adolph EJ, Gupta MK, Yu F, Hocking KM et al (2014) Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv Mater 26(4):607–614

    Article  CAS  Google Scholar 

  • Popov AP, Zvyagin AV, Lademann J, Roberts MS, Sanchez W, Priezzhev AV, Myllylä R (2010) Designing inorganic light-protective skin nanotechnology products. J Biomed Nanotechnol 6(5):432–451

    Article  CAS  Google Scholar 

  • Romeo A, Leung TS, Sanchez S (2016) Smart biosensors for multiplexed and fully integrated point-of-care diagnostics. Lab Chip 16(11):1957–1961

    Article  CAS  Google Scholar 

  • Sadzuka Y, Kishi K, Hirota S, Sonobe T (2003) Effect of polyethyleneglycol (PEG) chain on cell uptake of PEG-modified liposomes. J Liposome Res 13(2):157–172

    Article  CAS  Google Scholar 

  • Saw PE, Yu M, Choi M, Lee E, Jon S, Farokhzad OC (2017) Hyper-cell-permeable micelles as a drug delivery carrier for effective cancer therapy. Biomaterials 123:118–126

    Article  CAS  Google Scholar 

  • Shingadia D, Novelli V (2003) Diagnosis and treatment of tuberculosis in children. Lancet Infect Dis 3(10):624–632

    Article  Google Scholar 

  • Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB et al (2012) Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat Commun 3:1283

    Article  Google Scholar 

  • Tang DP, Yuan R, Chai YQ, Zhong X, Liu Y, Dai JY, Zhang LY (2004) Novel potentiometric immunosensor for hepatitis B surface antigen using a gold nanoparticle-based biomolecular immobilization method. Anal Biochem 333(2):345–350

    Article  CAS  Google Scholar 

  • Tran N, Webster TJ (2009) Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):336–351

    Article  CAS  Google Scholar 

  • Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C (2015) Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 35(2):645–651

    CAS  PubMed  Google Scholar 

  • Veigas B, Machado D, Perdigao J, Portugal I, Couto I, Viveiros M, Baptista PV (2010) Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis. Nanotechnology 21(41):415101

    Article  Google Scholar 

  • Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U (2018) Protein based nanostructures for drug delivery. J Pharm 2018:9285854. https://doi.org/10.1155/2018/9285854

    Article  CAS  Google Scholar 

  • Wang Q, Zhang N, Hu X, Yang J, Du Y (2008) Chitosan/polyethylene glycol blend fibers and their properties for drug controlled release. J Biomed Mater Res A 85(4):881–887

    Article  Google Scholar 

  • Wang S, Inci F, De Libero G, Singhal A, Demirci U (2013) Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv 31(4):438–449

    Article  Google Scholar 

  • World Health Organization (2010) Global tuberculosis control: WHO report 2010. World Health Organization, Geneva

    Google Scholar 

  • Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y et al (2018) Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 12(6):5121–5129

    Article  CAS  Google Scholar 

  • Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384

    Article  CAS  Google Scholar 

  • Zhang P, An K, Duan X, Xu H, Li F, Xu F (2018) Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov Today 23(4):900–911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SP and NY are thankful to Council of Scientific and Industrial Research (CSIR) and University Grants Commission (UGC), New Delhi, respectively, for providing financial assistance. The research grant provided to Molecular and Human Genetics Lab by Higher Education, Govt. of UP, Lucknow, under Centre of Excellence program is duly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parveen, S., Yadav, N., Banerjee, M. (2020). Nano-Based Drug Delivery Tools for Personalized Nanomedicine. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_11

Download citation

Publish with us

Policies and ethics