Skip to main content

Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation

  • Chapter
  • First Online:
Nanomaterials and Environmental Biotechnology

Abstract

Chitosan is an amino-polysaccharide made of glucosamine and N-acetyl-D-glucosamine. Owing to its biocompatible, biodegradable, and nontoxic nature, chitosan is considered as biomaterial, and these unique properties attested that chitosan has greater potential for biological applications. As cationic molecule, chitosan interacts with negatively charged gastrointestinal (GI) mucosal surface and hence is considered as potent mucoadhesive. Therefore chitosan-based encapsulation techniques provide better viability of probiotic microorganisms and protecting the latter in food products and at GI tract. In recent eons, chitosan or chitosan-based nanocomposites are considered as an attractive supportive matrix for enzyme immobilization because of the presence of reactive groups like amino and hydroxyl which supports long-term reusability of the immobilized biocatalyst. The current assignment highlights the recent research and cutting-edge strategies regarding chitosan-based nanomaterials in the field of probiotics encapsulation and enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alver E, Metin AÜ (2017) Chitosan based metal-chelated copolymer nanoparticles: Laccase immobilization and phenol degradation studies. Int Biodeterior Biodegrad 125:235–242

    Article  CAS  Google Scholar 

  • Amirbandeh M, Taheri-Kafrani A, Soozanipour A et al (2017) Triazine-functionalized chitosan-encapsulated superparamagnetic nanoparticles as reusable and robust nanocarrier for glucoamylase immobilization. Biochem Eng J 127:119–127

    Article  CAS  Google Scholar 

  • Ansari F, Pourjafar H, Jodat V et al (2017) Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express 7(1):144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashly PC, Joseph MJ, Mohanan PV (2011) Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem 127(4):1808–1813

    Article  CAS  Google Scholar 

  • Avadi MR, Sadeghi AM, Mohammadpour N et al (2010) Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine 6(1):58–63

    Article  CAS  PubMed  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54(1):207–233

    Article  CAS  PubMed  Google Scholar 

  • Bindu VU, Mohanan PV (2017) Enhanced stability of α-amylase via immobilization onto chitosan-TiO2 nanocomposite. Nanosci Technol 4(2):1–9

    Google Scholar 

  • Bouskra D, Brézillon C, Bérard M et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507

    Article  CAS  PubMed  Google Scholar 

  • Brunel F, Véron L, David L et al (2008) A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir 24(20):11370–11377

    Article  CAS  PubMed  Google Scholar 

  • Burgain J, Gaiani C, Linder M et al (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104(4):467–483

    Article  CAS  Google Scholar 

  • Cao M, Li Z, Wang J (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27(1):47–56

    Article  CAS  Google Scholar 

  • Champagne CP, Fustier P (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opinion Biotechnol 18(2):184–190

    Article  CAS  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P et al (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Chen XG, Liu CS, Liu CG et al (2006) Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J 27(3):269–274

    Article  CAS  Google Scholar 

  • Chen GC, Kuan IC, Hong JR et al (2011) Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica. Biotechnol Lett 33(3):525–529

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Sheu DC, Duan KJ (2014) Production of fructooligosaccharides using β-fructofuranosidase immobilized onto chitosan-coated magnetic nanoparticles. J Taiwan Inst Chem Eng 45(4):1105–1110

    Article  CAS  Google Scholar 

  • Choi YJ, Kim EJ, Piao Z et al (2004) Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl Environ Microbiol 70(8):4522–4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirillo G, Nicoletta FP, Curcio M et al (2014) Enzyme immobilization on smart polymers: catalysis on demand. React Funct Polym 83:62–69

    Article  CAS  Google Scholar 

  • Cook MT, Tzortzis G, Charalampopoulos D et al (2011) Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12:2834–2840

    Article  CAS  PubMed  Google Scholar 

  • Coradin T, Nassif N, Livage J (2003) Silica–alginate composites for microencapsulation. Appl Microbiol Biotechnol 61(5–6):429–434

    Article  CAS  PubMed  Google Scholar 

  • Daoud FB, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloid Surf B Biointerfaces 75(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • de Moura MR, Aouada FA, Mattoso LH (2008) Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci 321(2):477–483

    Article  PubMed  CAS  Google Scholar 

  • de Vos P, Faas MM, Spasojevic M et al (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302

    Article  CAS  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  • Delattre C, Fenoradosoa TA, Michaud P (2011) Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 54(6):1075–1092

    Article  CAS  Google Scholar 

  • Demirkan E, Avci T, Aykut Y (2018) Protease immobilization on cellulose monoacetate/chitosan-blended nanofibers. J Ind Tex 47(8):2092–2111

    Article  CAS  Google Scholar 

  • Devnani H, Bahadur A (2017) Variation in activity of lipase immobilized on chitosan and alginate nanoparticles by changing concentration of the preparatory reagents. Res Rev: J Life Sci 7(3):14–22

    CAS  Google Scholar 

  • Ebrahimnejad P, Khavarpour M, Khalili S (2017) Survival of Lactobacillus acidophilus as probiotic Bacteria using chitosan nanoparticles. Int J Eng Trans A: Basics 304:456–463

    Google Scholar 

  • Eratte D, McKnight S, Gengenbach TR et al (2015) Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J Funct Foods 19:882–892

    Article  CAS  Google Scholar 

  • Fang H, Huang J, Ding L et al (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol-Mater Sci Ed 24(1):42–47

    Article  CAS  Google Scholar 

  • Ferrario V, Ebert C, Knapic L et al (2011) Conformational changes of lipases in aqueous media: a comparative computational study and experimental implications. Adv Syn Cat 353(13):2466–2480

    Article  CAS  Google Scholar 

  • Foresti ML, Valle G, Bonetto R et al (2010) FTIR, SEM and fractal dimension characterization of lipase B from Candida antarctica immobilized onto titania at selected conditions. Appl Surface Sci 256(6):1624–1635

    Article  CAS  Google Scholar 

  • Gandomi H, Abbaszadeh S, Misaghi A et al (2016) Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT-Food Sci Technol 69:365–371

    Article  CAS  Google Scholar 

  • Ghadi A, Tabandeh F, Mahjoub S et al (2015) Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase. J Oleo Sci 64(4):423–430

    Article  CAS  PubMed  Google Scholar 

  • Gooday GW, Aruchami M, Gowri N et al (1986) Chitin deacetylases in invertebrates. In chitin in nature and technology. Springer, Boston

    Google Scholar 

  • Gordon S (2008) Elie Metchnikoff: father of natural immunity. Eur J Immunol 38(12):3257–3264

    Article  CAS  PubMed  Google Scholar 

  • Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE et al (2012) One-step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater 2012:4

    Article  CAS  Google Scholar 

  • Halder SK, Mondal KC (2018) Microbial valorization of chitinous bioresources for chitin extraction and production of chito-oligomers and N-acetylglucosamine: trends, perspectives and prospects. In: Microbial biotechnology. Springer, Singapore, pp 69–107

    Chapter  Google Scholar 

  • Heidebach T, Först P, Kulozik U (2012) Microencapsulation of probiotic cells for food applications. Crit Rev Food Sci Nutr 52(4):291–311

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann DE, Fraser CM, Palumbo FB et al (2013) Probiotics: finding the right regulatory balance. Science 342(6156):314–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homaei AA, Sariri R, Vianello F et al (2013) Enzyme immobilization: an update. J Chem Biol 6(4):185–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong YS, Hong KS, Park MH et al (2011) Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome. J Clin Gastroenterol 45(5):415–425

    Article  PubMed  Google Scholar 

  • Horchani H, Aissa I, Ouertani S et al (2012) Staphylococcal lipases: biotechnological applications. J Mol Catal B: Enzym 76:125–132

    Article  CAS  Google Scholar 

  • Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 1:49–61

    Article  CAS  Google Scholar 

  • Janssen MH, van Langen LM, Pereira SR et al (2002) Evaluation of the performance of immobilized penicillin G acylase using active-site titration. Biotechnol Bioeng 78(4):425–432

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84(4):406–414

    Article  CAS  PubMed  Google Scholar 

  • Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci U S A 108(Supplement 1):4659–4665

    Article  CAS  PubMed  Google Scholar 

  • Ju HY, Kuo CH, Too JR et al (2012) Optimal covalent immobilization of α-chymotrypsin on Fe3O4-chitosan nanoparticles. J Mol Catal B: Enzym 78:9–15

    Article  CAS  Google Scholar 

  • Kalkan NA, Aksoy S, Aksoy EA et al (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Pol Sci 123(2):707–716

    Article  CAS  Google Scholar 

  • Kang X, Mai Z, Zou X et al (2007) A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 369(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Katchalski-Katzir E, Kraemer DM (2000) Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10(1–3):157–76

    Article  CAS  Google Scholar 

  • Kim JU, Kim B, Shahbaz HM et al (2017) Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int J Food Sci Technol 52(2):519–530

    Article  CAS  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6(4):446–451

    Article  CAS  Google Scholar 

  • Klein MP, Nunes MR, Rodrigues RC et al (2012) Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13(8):2456–2464

    Article  CAS  PubMed  Google Scholar 

  • Klotzbach T, Watt M, Ansari Y et al (2006) Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J Membr Sci 282(1–2):276–283

    Article  CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35(2–3):126–139

    Article  CAS  Google Scholar 

  • Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41(3):305–312

    Article  CAS  Google Scholar 

  • Križnik L, Vasić K, Knez Ž et al (2018) Hyper-activation of ß-galactosidase from Aspergillus oryzae via immobilization onto amino-silane and chitosan magnetic maghemite nanoparticles. J Clean Prod 179:225–234

    Article  CAS  Google Scholar 

  • Kumar S, Jana AK, Dhamija I et al (2014) Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J Drug Target 22(2):123–137

    Article  CAS  PubMed  Google Scholar 

  • Kuo CH, Liu YC, Chang CM et al (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym 87(4):2538–2545

    Article  CAS  Google Scholar 

  • Li GY, Huang KL, Jiang YR et al (2008) Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles. Int J Biol Macromol 42(5):405–412

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Chen XG, Sun ZW et al (2011) Preparation of alginate/chitosan/ carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydr Polym 83:1479–1485

    Article  CAS  Google Scholar 

  • Li R, Fu G, Liu C (2018) Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 114:1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Liu X, Xing Z et al (2017) Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose 24(12):5541–5550

    Article  CAS  Google Scholar 

  • Ling XM, Wang XY, Ma P et al (2016) Covalent immobilization of penicillin G acylase onto Fe3O4@ chitosan magnetic nanoparticles. J Microbiol Biotechnol 26(5):829–836

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jia S, Wu Q et al (2011) Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Cat Com 12(8):717–720

    Article  CAS  Google Scholar 

  • Liu X, Chen X, Li Y et al (2012) Preparation of superparamagnetic Fe3O4@ alginate/chitosan nanospheres for Candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Appl Mater Interfaces 4(10):5169–5178

    Article  CAS  PubMed  Google Scholar 

  • Liu MQ, Huo WK, Xu X et al (2015) An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion. J Mol Cat B: Enzym 120:119–126

    Article  CAS  Google Scholar 

  • Liu DM, Chen J, Shi YP (2017) α-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. Int J Biol Macromol 105:308–316

    Article  CAS  PubMed  Google Scholar 

  • Long J, Li X, Zhan X et al (2017) Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4–chitosan) nanoparticles improves thermal and operational stability. Bioprocess Biosyst Eng 40(6):821–831

    Article  CAS  PubMed  Google Scholar 

  • Lozinsky VI, Galaev IY, Plieva FM et al (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21(10):445–451

    Article  CAS  PubMed  Google Scholar 

  • Luo XL, Xu JJ, Zhang Q et al (2005) Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron 21(1):190–196

    Article  CAS  PubMed  Google Scholar 

  • Mawad A, Helmy YA, Shalkami AG et al (2018) E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuniin vitro. Appl Microbiol Biotechnol 9:1–6

    Google Scholar 

  • Mbouguen JK, Ngameni E, Walcarius A (2006) Organoclay-enzyme film electrodes. Anal Chim Acta 578(2):145–155

    Article  PubMed  CAS  Google Scholar 

  • Mitchell S, Pérez-Ramírez J (2011) Mesoporous zeolites as enzyme carriers: synthesis, characterization, and application in biocatalysis. Catal Today. 2011 168(1):28–37

    Article  CAS  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58(11):1423–1430

    Article  CAS  Google Scholar 

  • Narwal SK, Saun NK, Gupta R (2014) Characterization and catalytic properties of free and silica-bound lipase: a comparative study. J Oleo Sci 63(6):599–605

    Article  CAS  PubMed  Google Scholar 

  • Nasti A, Zaki NM, de Leonardis P et al (2009) Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res 26(8):1918–1930

    Article  CAS  PubMed  Google Scholar 

  • Onay A, Dogan Ü, Ciftci H et al (2018) Amperometric glucose sensor based on the glucose oxidase enzyme immobilized on graphite rod electrode modified with Fe3O4-CS-Au magnetic nanoparticles. Ionics 2018:1–8

    Google Scholar 

  • Pal SL, Jana U, Manna PK et al (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1(6):228–234

    Google Scholar 

  • Pan C, Hu B, Li W et al (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B: Enzym 61(3–4):208–215

    Article  CAS  Google Scholar 

  • Pandey N, Bhatt R (2018) Improved biotransformation of arsenic by arsenite oxidase–chitosan nanoparticle conjugates. Int J Biol Macromol 106:258–265

    Article  CAS  PubMed  Google Scholar 

  • Patel SR, Yap MG, Wang DI (2009) Immobilization of l-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical compounds. Biochem Eng J 48(1):13–21

    Article  CAS  Google Scholar 

  • Prakash S, Tomaro-Duchesneau C, Saha S et al (2011) The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. Biomed Res Int 2:2011

    Google Scholar 

  • Quevrain E, Maubert MA, Michon C et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65(3):415–425

    Article  CAS  PubMed  Google Scholar 

  • Rahman IN, Attan N, Mahat NA et al (2018) Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Int J Biol Macromol 115:680–695

    Article  PubMed  CAS  Google Scholar 

  • Ramos PE, Cerqueira MA, Teixeira JA et al (2018) Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr 58(11):1864–1877

    Article  CAS  PubMed  Google Scholar 

  • Rani AS, Das ML, Satyanarayana S (2000) Preparation and characterization of amyloglucosidase adsorbed on activated charcoal. J Mol Cat B: Enzym 10(5):471–476

    Article  CAS  Google Scholar 

  • Reshmi R, Sanjay G, Sugunan S (2007) Immobilization of α-amylase on zirconia: a heterogeneous biocatalyst for starch hydrolysis. Catal Commun 8(3):393–399

    Article  CAS  Google Scholar 

  • Rodrigues NF, Neto SY, Luz RD et al (2018) Ultrasensitive determination of malathion using acetylcholinesterase immobilized on chitosan-functionalized magnetic iron nanoparticles. Biosensors 8(1):16

    Article  PubMed Central  CAS  Google Scholar 

  • Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Euro Food Res Technol 231(1):1–2

    Article  CAS  Google Scholar 

  • Roy JJ, Emilia Abraham T (2004) Strategies in making cross-linked enzyme crystals. Chem Rev 104(9):3705–3722

    Article  CAS  Google Scholar 

  • Roy JJ, Abraham TE, Abhijith KS et al (2005) Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase. Biosens Bioelectron 21(1):206–211

    Article  CAS  PubMed  Google Scholar 

  • Sadighi A, Faramarzi MA (2013) Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. J Taiwan Ins Chem Eng 44(2):156–162

    Article  CAS  Google Scholar 

  • Salemi Z (2010) Tailor-made enzyme carriers: preparation and use of adsorbents specifically designed to immobilize allosteric enzymes in activated conformation. Am J Biochem Biotechnol 6:111–115

    Article  CAS  Google Scholar 

  • Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P et al (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307

    Article  CAS  Google Scholar 

  • Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92(3):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA, Schoevaart R, Van Langen LM (2005) Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal Biotransform 23(3–4):141–147

    Article  CAS  Google Scholar 

  • Shen Q, Yang R, Hua X et al (2011) Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem 46(8):1565–1571

    Article  CAS  Google Scholar 

  • Shojaei F, Homaei A, Taherizadeh MR et al (2017) Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. Int J Food Prop 20(sup2):1413–1423

    CAS  Google Scholar 

  • Shori AB (2017) Microencapsulation improved probiotics survival during gastric transit. HAYATI J Biosc 24(1):1–5

    Article  Google Scholar 

  • Sojitra UV, Nadar SS, Rathod VK (2017) Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym 157:677–685

    Article  CAS  PubMed  Google Scholar 

  • Sorlier P, Denuzière A, Viton C et al (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2(3):765–772

    Article  CAS  PubMed  Google Scholar 

  • Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Pat Eng 2(3):195–200

    Article  CAS  Google Scholar 

  • Sullivan Å, Nord CE (2005) Probiotics and gastrointestinal diseases. J Int Med 257(1):78–92

    Article  CAS  Google Scholar 

  • Sun J, Yang L, Jiang M et al (2017) Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde. J Chromatogr B 1054:57–63

    Article  CAS  Google Scholar 

  • Suo H, Xu L, Xu C et al (2018) Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-chitosan nanocomposites. Int J Biol Macromol 119:624–632

    Article  CAS  PubMed  Google Scholar 

  • Tang ZX, Qian JQ, Shi LE (2006) Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochem 41(5):1193–1197

    Article  CAS  Google Scholar 

  • Tarasi R, Alipour M, Gorgannezhad L et al (2018) Laccase immobilization onto magnetic β-cyclodextrin-modified chitosan: improved enzyme stability and efficient performance for phenolic compounds elimination. Macromol Res 2018:1–8

    Google Scholar 

  • Thomas MB, Vaidyanathan M, Radhakrishnan K et al (2014) Enhanced viability of probiotic Saccharomyces boulardii encapsulated by layer-by-layer approach in pH responsive chitosan-dextran sulfate polyelectrolytes. J Food Eng 136:1–8

    Article  CAS  Google Scholar 

  • Tiwari M (2017) The role of serratiopeptidase in the resolution of inflammation. Asian J Pharma Sci 12(3):209–212

    Article  Google Scholar 

  • Valerio SG, Alves JS, Klein MP et al (2013) High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr Polym 92(1):462–468

    Article  CAS  PubMed  Google Scholar 

  • Vallés D, Furtado S, Villadóniga C et al (2011) Adsorption onto alumina and stabilization of cysteine proteinases from crude extract of solanum granuloso-leprosum fruits. Process Biochem 46(2):592–598

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yamini D, Ambika V et al (2009) Trends in inulinase production–a review. Crit Rev Biotechnol 29(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Waifalkar PP, Parit SB, Chougale AD et al (2016) Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation. J Colloid Interface Sci 482:159–164

    Article  CAS  PubMed  Google Scholar 

  • Wang ZG, Wan LS, Liu ZM et al (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Cat B: Enzym 56(4):189–195

    Article  CAS  Google Scholar 

  • Wang Y, Begum-Haque S, Telesford KM et al (2014) A commensal bacterial product elicits and modulates migratory capacity of CD39+ CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes 5(4):552–561

    Article  PubMed  Google Scholar 

  • Wang XY, Jiang XP, Li Y et al (2015) Preparation Fe3O4@ chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int J Biol Macromol 75:44–50

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Nallathambi V, Chakraborty D et al (2011) Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim Acta 175(3–4):283–289

    Article  CAS  Google Scholar 

  • Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109(9):4025–4053

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang Y, Luo G et al (2009a) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 100(14):3459–3464

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang J, Kang X et al (2009b) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80(1):403–406

    Article  CAS  PubMed  Google Scholar 

  • Xiang X, Ding S, Suo H et al (2018) Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydr Polym 182:245–253

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Si S, Zhang C (2008) Study on the activity and stability of urease immobilized onto nanoporous alumina membranes. Microporous Mesoporous Mater 111(1–3):359–366

    Article  CAS  Google Scholar 

  • Yang K, Xu NS, Su WW (2010) Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J Biotechnol 148(2–3):119–127

    Article  CAS  PubMed  Google Scholar 

  • Zang L, Qiu J, Wu X et al (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53(9):3448–3454

    Article  CAS  Google Scholar 

  • Ziegler-Borowska M, Chelminiak-Dudkiewicz D, Siódmiak T et al (2017) Chitosan–collagen coated magnetic nanoparticles for lipase immobilization—new type of “enzyme friendly” polymer shell crosslinking with squaric acid. Catalysts 7(1):26

    Article  CAS  Google Scholar 

  • Zou B, Hu Y, Cui F et al (2014) Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. J Colloid Interface Sci 417:210–216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumar Halder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakshit, S., Halder, S.K., Mondal, K.C. (2020). Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_10

Download citation

Publish with us

Policies and ethics