Skip to main content
Book cover

Heparanase pp 647–667Cite as

Heparanase in Kidney Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scott, R. P., & Quaggin, S. E. (2015, April). The cell biology of renal filtration. The Journal of Cell Biology, 209(2), 199–210.

    Google Scholar 

  2. Miner, J. H. (2012, May). The glomerular basement membrane. Experimental Cell Research, 318(9), 973–978.

    Google Scholar 

  3. Haraldsson, B., Nystrom, J., & Deen, W. M. (2008, April). Properties of the glomerular barrier and mechanisms of proteinuria. Physiological Reviews, 88(2), 451–487.

    Article  CAS  PubMed  Google Scholar 

  4. Shute, J. (2012). Glycosaminoglycan and chemokine/growth factor interactions. Handbook of experimental pharmacology, 207, 307–324.

    Article  CAS  Google Scholar 

  5. Maezawa, Y., Takemoto, M., & Yokote, K. (2015, January). Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. Journal of diabetes investigation, 6(1), 3–15.

    Article  PubMed  Google Scholar 

  6. Schött, U., Solomon, C., Fries, D., & Bentzer, P. (2016, April). The endothelial glycocalyx and its disruption, protection and regeneration: A narrative review. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, 48.

    Google Scholar 

  7. Goldberg, R., Rubinstein, A. M., Gil, N., Hermano, E., Li, J. P., van der Vlag, J., et al. (2014, December). Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes, 63(12), 4302–4313.

    Article  CAS  PubMed  Google Scholar 

  8. Friden, V., Oveland, E., Tenstad, O., Ebefors, K., Nystrom, J., Nilsson, U. A., et al. (2011, June). The glomerular endothelial cell coat is essential for glomerular filtration. Kidney International, 79(12), 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  9. Reiser, J., & Altintas, M. M. (2016, January). Podocytes. F1000Research, 5: F1000 Faculty Rev-114.

    Google Scholar 

  10. Ichimura, K., Kurihara, H., & Sakai, T. (2003, December). Actin filament organization of foot processes in rat podocytes. The Journal of Histochemistry and Cytochemistry, 51(12), 1589–1600.

    Google Scholar 

  11. Kriz, W., Hackenthal, E., Nobiling, R., Sakai, T., Elger, M., & Hahnel, B. (1994, February). A role for podocytes to counteract capillary wall distension. Kidney International, 45(2), 369–376.

    Article  CAS  PubMed  Google Scholar 

  12. Garsen, M., Lenoir, O., Rops, A. L., Dijkman, H. B., Willemsen, B., van Kuppevelt, T. H., et al. (2016, December). Endothelin-1 induces proteinuria by Heparanase-mediated disruption of the glomerular Glycocalyx. Journal of the American Society of Nephrology, 27(12), 3545–3551.

    Google Scholar 

  13. Haraldsson, B., & Nystrom, J. (2012, May). The glomerular endothelium: New insights on function and structure. Current Opinion in Nephrology and Hypertension, 21(3), 258–263.

    Article  CAS  PubMed  Google Scholar 

  14. Esser, S., Wolburg, K., Wolburg, H., Breier, G., Kurzchalia, T., & Risau, W. (1998, February). Vascular endothelial growth factor induces endothelial fenestrations in vitro. The Journal of Cell Biology, 140(4), 947–959.

    Google Scholar 

  15. van den Hoven, M. J., Rops, A. L., Vlodavsky, I., Levidiotis, V., Berden, J. H., & van der Vlag, J. (2007, September). Heparanase in glomerular diseases. Kidney International, 72(5), 543–548.

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K., & Miner, J. H. (2009, July). Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrology, Dialysis, Transplantation, 24(7), 2044–2051.

    Google Scholar 

  17. Harvey, S. J., Jarad, G., Cunningham, J., Rops, A. L., van der Vlag, J., Berden, J. H., et al. (2007, July). Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. The American Journal of Pathology, 171(1), 139–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, S., Wassenhove-McCarthy, D. J., Yamaguchi, Y., Holzman, L. B., van Kuppevelt, T. H., Jenniskens, G. J., et al. (2008, August). Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney International, 74(3), 289–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van den Hoven, M. J., Wijnhoven, T. J., Li, J. P., Zcharia, E., Dijkman, H. B., Wismans, R. G., et al. (2008, February). Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney International, 73(3), 278–287.

    Article  PubMed  CAS  Google Scholar 

  20. Bame, K. J. (2001, June). Heparanases: Endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology, 11(6), 91r–98r.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, J. C., Laloo, A. E., Singh, S., & Ferro, V. (2014, January). 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase. Biochemical and Biophysical Research Communications, 443(1), 185–188.

    Google Scholar 

  22. Wu, L., Viola, C. M., Brzozowski, A. M., & Davies, G. J. (2015, December). Structural characterization of human heparanase reveals insights into substrate recognition. Nature Structural & Molecular Biology, 22(12), 1016–1022.

    Article  CAS  Google Scholar 

  23. Rabelink, T. J., van den Berg, B. M., Garsen, M., Wang, G., Elkin, M., & van der Vlag, J. (2017, April). Heparanase: Roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nature Reviews Nephrology, 13(4), 201–212.

    Article  CAS  PubMed  Google Scholar 

  24. Abboud-Jarrous, G., Atzmon, R., Peretz, T., Palermo, C., Gadea, B. B., Joyce, J. A., et al. (2008, June). Cathepsin L is responsible for processing and activation of Proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176.

    Google Scholar 

  25. Buczek-Thomas, J. A., Hsia, E., Rich, C. B., Foster, J. A., & Nugent, M. A. (2008, September). Inhibition of histone Acetyltransferase by Glycosaminoglycans. Journal of Cellular Biochemistry, 105(1), 108–120.

    Google Scholar 

  26. Stewart, M. D., & Sanderson, R. D. (2014, April). Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biology, 35, 56–59.

    Google Scholar 

  27. Wang, F., Wang, Y., Zhang, D., Puthanveetil, P., Johnson, J. D., & Rodrigues, B. (2012, February). Fatty acid-induced nuclear translocation of heparanase uncouples glucose metabolism in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(2), 406–414.

    Article  PubMed  CAS  Google Scholar 

  28. Roy, M., & Marchetti, D. (2009). Cell surface Heparan Sulfate released by Heparanase promotes melanoma cell migration and angiogenesis. Journal of Cellular Biochemistry, 106(2), 200–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sasaki, N., Higashi, N., Taka, T., Nakajima, M., Irimura, T. (2004, March). Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. Journal of Immunology, 172(6), 3830–3835.

    Google Scholar 

  30. Ziolkowski, A. F., Popp, S. K., Freeman, C., Parish, C. R., Simeonovic, C. J. (2012, January). Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes. The Journal of Clinical Investigation, 122(1), 132–141.

    Google Scholar 

  31. Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N., & Vlodavsky, I. (2017, September). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284(1), 42–55.

    Google Scholar 

  32. Goldberg, R., Meirovitz, A., Hirshoren, N., Bulvik, R., Binder, A., Rubinstein, A. M., et al. (2013, June). Versatile role of heparanase in inflammation. Matrix Biology, 32(5), 234–240.

    Google Scholar 

  33. Garsen, M., Rops, A. L., Rabelink, T. J., Berden, J. H., & van der Vlag, J. (2014, January). The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrology, Dialysis, Transplantation, 29(1), 49–55.

    Google Scholar 

  34. Levidiotis, V., Kanellis, J., Ierino, F. L., & Power, D. A. (2001, October). Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney International, 60(4), 1287–1296.

    Google Scholar 

  35. Levidiotis, V., Freeman, C., Tikellis, C., Cooper, M. E., & Power, D. A. (2004, January). Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. Journal of the American Society of Nephrology, 15(1), 68–78.

    Google Scholar 

  36. Levidiotis, V., Freeman, C., Punler, M., Martinello, P., Creese, B., Ferro, V., et al. (2004, November). A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. Journal of the American Society of Nephrology, 15(11), 2882–2892.

    Google Scholar 

  37. Simeonovic, C. J., Ziolkowski, A. F., Wu, Z., Choong, F. J., Freeman, C., & Parish, C. R. (2013, December). Heparanase and autoimmune diabetes. Frontiers in Immunology, 4, 471.

    Google Scholar 

  38. Gil, N., Goldberg, R., Neuman, T., Garsen, M., Zcharia, E., Rubinstein, A. M., et al. (2012, January). Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes, 61(1), 208–216.

    Google Scholar 

  39. van den Hoven, M. J., Rops, A. L., Bakker, M. A., Aten, J., Rutjes, N., Roestenberg, P., et al. (2006, December). Increased expression of heparanase in overt diabetic nephropathy. Kidney International, 70(12), 2100–2108.

    Article  PubMed  CAS  Google Scholar 

  40. Garsen, M., Benner, M., Dijkman, H. B., van Kuppevelt, T. H., Li, J. P., Rabelink, T. J., et al. (2016, April). Heparanase is essential for the development of acute experimental glomerulonephritis. The American Journal of Pathology, 186(4), 805–815.

    Article  CAS  PubMed  Google Scholar 

  41. Ilan, N., Shteingauz, A., & Vlodavsky, I. (2015). Function from within: Autophagy induction by HPSE/heparanase—New possibilities for intervention. Autophagy, 11(12), 2387–2389.

    Google Scholar 

  42. Sever, S., Altintas, M. M., Nankoe, S. R., Moller, C. C., Ko, D., Wei, C., et al. (2007, August). Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. The Journal of Clinical Investigation, 117(8), 2095–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Faul, C., Donnelly, M., Merscher-Gomez, S., Chang, Y. H., Franz, S., Delfgaauw, J., et al. (2008, September). The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine a. Nature Medicine, 14(9), 931–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yaddanapudi, S., Altintas, M. M., Kistler, A. D., Fernandez, I., Moller, C. C., Wei, C., et al. (2011, October). CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. The Journal of Clinical Investigation, 121(10), 3965–3980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lehtonen, S., Zhao, F., & Lehtonen, E. (2002, October). CD2-associated protein directly interacts with the actin cytoskeleton. American Journal of Physiology Renal Physiology, 283(4), F734–F743.

    Article  PubMed  Google Scholar 

  46. Reiser, J., Adair, B., & Reinheckel, T. (2010, October). Specialized roles for cysteine cathepsins in health and disease. The Journal of Clinical Investigation, 120(10), 3421–3431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, J. M., Wu, H., Green, G., Winkler, C. A., Kopp, J. B., Miner, J. H., et al. (2003, May). CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science300(5623), 1298–1300.

    Google Scholar 

  48. Huber, T. B., Kwoh, C., Wu, H., Asanuma, K., Godel, M., Hartleben, B., et al. (2006, May). Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. The Journal of Clinical Investigation, 116(5), 1337–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mundel, P., & Reiser, J. (2010, April). Proteinuria: An enzymatic disease of the podocyte? Kidney International, 77(7), 571–580.

    Article  CAS  PubMed  Google Scholar 

  50. Garsen, M., Rops, A. L., Dijkman, H., Willemsen, B., van Kuppevelt, T. H., Russel, F. G., et al. (2016, November). Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney International, 90(5), 1012–1022.

    Article  CAS  PubMed  Google Scholar 

  51. Baricos, W. H., Cortez, S. L., Le, Q. C., Wu, L. T., Shaw, E., Hanada, K., et al. (1991, August). Evidence suggesting a role for cathepsin L in an experimental model of glomerulonephritis. Archives of Biochemistry and Biophysics, 288(2), 468–472.

    Google Scholar 

  52. Lehrke, I., Waldherr, R., Ritz, E., & Wagner, J. (2001, November). Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. Journal of the American Society of Nephrology, 12(11), 2321–2329.

    Google Scholar 

  53. Karet, F. E., Kuc, R. E., & Davenport, A. P. (1993, July). Novel ligands BQ123 and BQ3020 characterize endothelin receptor subtypes ETA and ETB in human kidney. Kidney International, 44(1), 36–42.

    Article  CAS  PubMed  Google Scholar 

  54. Wendel, M., Knels, L., Kummer, W., & Koch, T. (2006, November). Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney. The Journal of Histochemistry and Cytochemistry, 54(11), 1193–1203.

    Google Scholar 

  55. Barton, M., & Yanagisawa, M. (2008, August). Endothelin: 20 years from discovery to therapy. Canadian Journal of Physiology and Pharmacology, 86(8), 485–498.

    Article  CAS  PubMed  Google Scholar 

  56. Clozel, M., & Salloukh, H. (2005). Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Annals of Medicine, 37(1), 2–12.

    Article  CAS  PubMed  Google Scholar 

  57. Shi-Wen, X., Denton, C. P., Dashwood, M. R., Holmes, A. M., Bou-Gharios, G., Pearson, J. D., et al. (2001, March). Fibroblast matrix gene expression and connective tissue remodeling: Role of endothelin-1. The Journal of Investigative Dermatology, 116(3), 417–425.

    Article  CAS  PubMed  Google Scholar 

  58. Neuhofer, W., & Pittrow, D. (2006, September). Role of endothelin and endothelin receptor antagonists in renal disease. European Journal of Clinical Investigation, 36(Suppl 3), 78–88.

    Article  CAS  PubMed  Google Scholar 

  59. Fukui, M., Nakamura, T., Ebihara, I., Osada, S., Tomino, Y., Masaki, T., et al. (1993, August). Gene expression for endothelins and their receptors in glomeruli of diabetic rats. The Journal of Laboratory and Clinical Medicine, 122(2), 149–156.

    CAS  PubMed  Google Scholar 

  60. Fligny, C., Barton, M., & Tharaux, P. L. (2011). Endothelin and podocyte injury in chronic kidney disease. Contributions to Nephrology, 172, 120–138.

    Article  CAS  PubMed  Google Scholar 

  61. Yoshimura, A., Iwasaki, S., Inui, K., Ideura, T., Koshikawa, S., Yanagisawa, M., et al. (1995, October). Endothelin-1 and endothelin B type receptor are induced in mesangial proliferative nephritis in the rat. Kidney International, 48(4), 1290–1297.

    Article  CAS  PubMed  Google Scholar 

  62. Barton, M. (2008, September). Reversal of proteinuric renal disease and the emerging role of endothelin. Nature Clinical Practice Nephrology, 4(9), 490–501.

    Article  CAS  PubMed  Google Scholar 

  63. Mann, J. F., Green, D., Jamerson, K., Ruilope, L. M., Kuranoff, S. J., Littke, T., et al. (2010, March). Avosentan for overt diabetic nephropathy. Journal of the American Society of Nephrology, 21(3), 527–535.

    Google Scholar 

  64. Schievink, B., de Zeeuw, D., Smink, P. A., Andress, D., Brennan, J. J., Coll, B., et al. (2016, May). Prediction of the effect of atrasentan on renal and heart failure outcomes based on short-term changes in multiple risk markers. European Journal of Preventive Cardiology, 23(7), 758–768.

    Article  PubMed  Google Scholar 

  65. Kohan, D. E., & Barton, M. (2014, November). Endothelin and endothelin antagonists in chronic kidney disease. Kidney International, 86(5), 896–904.

    Google Scholar 

  66. Ortmann, J., Amann, K., Brandes, R. P., Kretzler, M., Munter, K., Parekh, N., et al. (2004, December). Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition. Hypertension, 44(6), 974–981.

    Google Scholar 

  67. Gomez-Garre, D., Largo, R., Liu, X. H., Gutierrez, S., Lopez-Armada, M. J., Palacios, I., et al. (1996, September). An orally active ETA/ETB receptor antagonist ameliorates proteinuria and glomerular lesions in rats with proliferative nephritis. Kidney International, 50(3), 962–972.

    Article  CAS  PubMed  Google Scholar 

  68. Tousoulis, D., Kampoli, A. M., Tentolouris, C., Papageorgiou, N., & Stefanadis, C. (2012, January). The role of nitric oxide on endothelial function. Current Vascular Pharmacology, 10(1), 4–18.

    Article  CAS  PubMed  Google Scholar 

  69. Davignon, J., & Ganz, P. (2004, June). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 Suppl 1), Iii27–Iii32.

    Google Scholar 

  70. Nakayama, T., Sato, W., Kosugi, T., Zhang, L., Campbell-Thompson, M., Yoshimura, A., et al. (2009, February). Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. American Journal of Physiology Renal Physiology, 296(2), F317–F327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun, Y. B., Qu, X., Zhang, X., Caruana, G., Bertram, J. F., & Li, J. (2013). Glomerular endothelial cell injury and damage precedes that of podocytes in adriamycin-induced nephropathy. PLoS One, 8(1), e55027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heeringa, P., van Goor, H., Itoh-Lindstrom, Y., Maeda, N., Falk, R. J., Assmann, K. J., et al. (2000, March). Lack of endothelial nitric oxide synthase aggravates murine accelerated anti-glomerular basement membrane glomerulonephritis. The American Journal of Pathology., 156(3), 879–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, H. J., Wang, S., Cheng, H., Zhang, M. Z., Takahashi, T., Fogo, A. B., et al. (2006, October). Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. Journal of the American Society of Nephrology, 17(10), 2664–2669.

    Google Scholar 

  74. Nakagawa, T., Sato, W., Glushakova, O., Heinig, M., Clarke, T., Campbell-Thompson, M., et al. (2007, February). Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. Journal of the American Society of Nephrology, 18(2), 539–550.

    Google Scholar 

  75. Kanetsuna, Y., Takahashi, K., Nagata, M., Gannon, M. A., Breyer, M. D., Harris, R. C., et al. (2007, May). Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. The American Journal of Pathology, 170(5), 1473–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Savard, S., Lavoie, P., Villeneuve, C., Agharazii, M., Lebel, M., & Lariviere, R. (2012, June). eNOS gene delivery prevents hypertension and reduces renal failure and injury in rats with reduced renal mass. Nephrology, Dialysis, Transplantation, 27(6), 2182–2190.

    Google Scholar 

  77. Garsen, M., Rops, A. L., Li, J., van Beneden, K., van den Branden, C., Berden, J. H., et al. (2016). Endothelial nitric oxide synthase prevents Heparanase induction and the development of proteinuria. PLoS One, 11(8), e0160894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mawer, E. B., Taylor, C. M., Backhouse, J., Lumb, G. A., & Stanbury, S. W. (1973, March). Failure of formation of 1,25-dihydroxycholecalciferol in chronic renal insufficiency. Lancet, 1(7804), 626–628.

    Google Scholar 

  79. Garsen, M., Sonneveld, R., Rops, A. L., Huntink, S., van Kuppevelt, T. H., Rabelink, T. J., et al. (2015, December). Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. The Journal of Pathology, 237(4), 472–481.

    Article  CAS  PubMed  Google Scholar 

  80. Toyoda, M., Najafian, B., Kim, Y., Caramori, M. L., & Mauer, M. (2007, August). Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes, 56(8), 2155–2160.

    Article  CAS  PubMed  Google Scholar 

  81. Weil, E. J., Lemley, K. V., Mason, C. C., Yee, B., Jones, L. I., Blouch, K., et al. (2012, June). Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney International, 82(9), 1010–1017.

    Google Scholar 

  82. Katz, A., Van-Dijk, D. J., Aingorn, H., Erman, A., Davies, M., Darmon, D., et al. (2002, November). Involvement of human heparanase in the pathogenesis of diabetic nephropathy. The Israel Medical Association Journal, 4(11), 996–1002.

    Google Scholar 

  83. Singh, A., Friden, V., Dasgupta, I., Foster, R. R., Welsh, G. I., Tooke, J. E., et al. (2011, January). High glucose causes dysfunction of the human glomerular endothelial glycocalyx. American Journal of Physiology Renal Physiology, 300(1), F40–F48.

    Article  CAS  PubMed  Google Scholar 

  84. Singh, A., Ramnath, R. D., Foster, R. R., Wylie, E. C., Friden, V., Dasgupta, I., et al. (2013). Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One, 8(2), e55852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van den Hoven, M. J., Waanders, F., Rops, A. L., Kramer, A. B., van Goor, H., Berden, J. H., et al. (2009, September). Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrology, Dialysis, Transplantation, 24(9), 2637–2645.

    Article  PubMed  CAS  Google Scholar 

  86. Rops, A. L., van den Hoven, M. J., Veldman, B. A., Salemink, S., Vervoort, G., Elving, L. D., et al. (2012, July). Urinary heparanase activity in patients with type 1 and type 2 diabetes. Nephrology, Dialysis, Transplantation, 27(7), 2853–2861.

    Article  CAS  PubMed  Google Scholar 

  87. Duran-Salgado, M. B., & Rubio-Guerra, A. F. (2014, June). Diabetic nephropathy and inflammation. World Journal of Diabetes, 5(3), 393–398.

    Google Scholar 

  88. Lim, A. K. H., & Tesch, G. H. (2012). Inflammation in diabetic nephropathy. Mediators of Inflammation, 2012, 146154.

    Google Scholar 

  89. Navarro-Gonzalez, J. F., Mora-Fernandez, C., Muros de Fuentes, M., & Garcia-Perez, J. (2011, June). Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature Reviews Nephrology, 7(6), 327–340.

    Article  CAS  PubMed  Google Scholar 

  90. You, H., Gao, T., Cooper, T. K., Brian Reeves, W., & Awad, A. S. (2013, December). Macrophages directly mediate diabetic renal injury. American Journal of Physiology Renal Physiology, 305(12), F1719–F1727.

    Google Scholar 

  91. Tesch, G. H. (2010, May). Macrophages and diabetic nephropathy. Seminars in Nephrology, 30(3), 290–301.

    Article  CAS  PubMed  Google Scholar 

  92. Shanmugam, N., Reddy, M. A., Guha, M., & Natarajan, R. (2003, May). High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes, 52(5), 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  93. Cha, J. J., Hyun, Y. Y., Lee, M. H., Kim, J. E., Nam, D. H., Song, H. K., et al. (2013, June). Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology, 154(6), 2144–2155.

    Article  CAS  PubMed  Google Scholar 

  94. Jin, X., Yao, T., Ze, Z., Zhu, J., Zhang, S., Hu, W., et al. (2015). Advanced Glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. BioMed Research International, 2015, 732450.

    Google Scholar 

  95. Navarro-Gonzalez, J. F., Jarque, A., Muros, M., Mora, C., & Garcia, J. (2009, April). Tumor necrosis factor-alpha as a therapeutic target for diabetic nephropathy. Cytokine & Growth Factor Reviews, 20(2), 165–173.

    Article  CAS  Google Scholar 

  96. Chow, F. Y., Nikolic-Paterson, D. J., Atkins, R. C., & Tesch, G. H. (2004, December). Macrophages in streptozotocin-induced diabetic nephropathy: Potential role in renal fibrosis. Nephrology, Dialysis, Transplantation, 19(12), 2987–2996.

    Article  CAS  PubMed  Google Scholar 

  97. Tashiro, K., Koyanagi, I., Saitoh, A., Shimizu, A., Shike, T., Ishiguro, C., et al. (2002). Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. Journal of Clinical Laboratory Analysis, 16(1), 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boels, M. G. S., Koudijs, A., Avramut, M. C., Sol, W., Wang, G., van Oeveren-Rietdijk, A. M., et al. (2017, November). Systemic monocyte chemotactic Protein-1 inhibition modifies renal macrophages and restores glomerular endothelial Glycocalyx and barrier function in diabetic nephropathy. The American Journal of Pathology, 187(11), 2430–2440.

    Article  CAS  PubMed  Google Scholar 

  99. Lerner, I., Hermano, E., Zcharia, E., Rodkin, D., Bulvik, R., Doviner, V., et al. (2011, May). Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. The Journal of Clinical Investigation, 121(5), 1709–1721.

    Google Scholar 

  100. Goodall, K. J., Poon, I. K., Phipps, S., & Hulett, M. D. (2014). Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One, 9(10), e109596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Devaraj, S., Tobias, P., Kasinath, B. S., Ramsamooj, R., Afify, A., & Jialal, I. (2011, August). Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(8), 1796–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Blich, M., Golan, A., Arvatz, G., Sebbag, A., Shafat, I., Sabo, E., et al. (2013, February). Macrophages activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(2), e56–e65.

    Google Scholar 

  103. Gordts, P., Foley, E. M., Lawrence, R., Sinha, R., Lameda-Diaz, C., Deng, L., et al. (2014, November). Reducing macrophage proteoglycan sulfation increases atherosclerosis and obesity through enhanced type I interferon signaling. Cell Metabolism, 20(5), 813–826.

    Google Scholar 

  104. Gordts, P. L. S. M., & Esko, J. D. (2015, March). Heparan sulfate proteoglycans fine-tune macrophage inflammation via IFN-β. Cytokine, 72(1), 118–119.

    Google Scholar 

  105. Goldberg, R., Sonnenblick, A., Hermano, E., Hamburger, T., Meirovitz, A., Peretz, T., et al. (2017, March). Heparanase augments insulin receptor signaling in breast carcinoma. Oncotarget, 8(12), 19403–19412.

    Article  PubMed  Google Scholar 

  106. Ritchie, J. P., Ramani, V. C., Ren, Y., Naggi, A., Torri, G., Casu, B., et al. (2011, March). SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clinical Cancer Research, 17(6), 1382–1393.

    Google Scholar 

  107. Kuhnast, B., El Hadri, A., Boisgard, R., Hinnen, F., Richard, S., Caravano, A., et al. (2016, February). Synthesis, radiolabeling with fluorine-18 and preliminary in vivo evaluation of a heparan sulphate mimetic as potent angiogenesis and heparanase inhibitor for cancer applications. Organic & Biomolecular Chemistry, 14(6), 1915–1920.

    Google Scholar 

  108. Xu, D., & Esko, J. D. (2014). Demystifying heparan sulfate-protein interactions. Annual Review of Biochemistry, 83, 129–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blich, M., Golan, A., Arvatz, G., Sebbag, A., Shafat, I., Sabo, E., et al. (2013, February). Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(2), e56–e65.

    Article  CAS  PubMed  Google Scholar 

  110. Nadanaka, S., Purunomo, E., Takeda, N., Tamura, J., & Kitagawa, H. (2014, May). Heparan sulfate containing unsubstituted glucosamine residues: Biosynthesis and heparanase-inhibitory activity. The Journal of Biological Chemistry, 289(22), 15231–15243.

    Google Scholar 

  111. Niu, T. T., Zhang, D. S., Chen, H. M., & Yan, X. J. (2015, July). Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified lambda-carrageenan oligosaccharides. Carbohydrate Polymers, 125, 76–84.

    Google Scholar 

  112. Poplawska, A., Szelachowska, M., Topolska, J., Wysocka-Solowie, B., & Kinalska, I. (1997, November). Effect of glycosaminoglycans on urinary albumin excretion in insulin-dependent diabetic patients with micro- or macroalbuminuria. Diabetes Research and Clinical Practice, 38(2), 109–114.

    Article  CAS  PubMed  Google Scholar 

  113. Weissmann, M., Arvatz, G., Horowitz, N., Feld, S., Naroditsky, I., Zhang, Y., et al. (2016, January). Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 704–709.

    Google Scholar 

  114. Zetser, A., Levy-Adam, F., Kaplan, V., Gingis-Velitski, S., Bashenko, Y., Schubert, S., et al. (2004, June). Processing and activation of latent heparanase occurs in lysosomes. Journal of Cell Science, 117(Pt 11), 2249–2258.

    Google Scholar 

  115. de Zeeuw, D., Bekker, P., Henkel, E., Hasslacher, C., Gouni-Berthold, I., Mehling, H., et al. (2015, September). The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: A randomised trial. The Lancet Diabetes & Endocrinology, 3(9), 687–696.

    Article  CAS  Google Scholar 

  116. Menne, J., Eulberg, D., Beyer, D., Baumann, M., Saudek, F., Valkusz, Z., et al. (2017, February). C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrology, Dialysis, Transplantation, 32(2), 307–315.

    Google Scholar 

  117. Baricos, W. H., O’Connor, S. E., Cortez, S. L., Wu, L. T., & Shah, S. V. (1988, September). The cysteine proteinase inhibitor, E-64, reduces proteinuria in an experimental model of glomerulonephritis. Biochemical and Biophysical Research Communications, 155(3), 1318–1323.

    Google Scholar 

  118. Levy-Adam, F., Feld, S., Cohen-Kaplan, V., Shteingauz, A., Gross, M., Arvatz, G., et al. (2010, September). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019.

    Google Scholar 

  119. Guo, C., Kaneko, S., Sun, Y., Huang, Y., Vlodavsky, I., Li, X., et al. (2015, April). A mouse model of urofacial syndrome with dysfunctional urination. Human Molecular Genetics, 24(7), 1991–1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan van der Vlag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Vlag, J., Buijsers, B. (2020). Heparanase in Kidney Disease. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_26

Download citation

Publish with us

Policies and ethics