Skip to main content

Perspectives on and Need to Develop New Infection Control Strategies

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Bacterial infections by antimicrobial-resistant pathogens threaten to become the number one cause of death in 2050. Therewith the optimism about infection control that arose after the discovery of antibiotics has come to an end and new infection control strategies are direly needed. Development of new antibiotics is generally considered unlikely. In this chapter, a likelihood perspective is given, for the possibilities offered by combination and smart encapsulation of existing antibiotics, use of probiotics and phage therapy, antimicrobial peptides and nanotechnology-based antimicrobials. Combination of existing antibiotics with probiotics, antimicrobial peptides, or nanotechnology-based antimicrobials may also have good perspectives for clinical infection control, also when caused by antimicrobial-resistant strains. Therewith, existing antibiotics may still be useful for several decades to come despite the occurrence of antibiotic resistance, provided further research and development of the above strategies are focused on their downward clinical translation, carried out collaboratively within academia and industry, rather than on developing and publishing yet another, new antimicrobial compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wainwright M (1989) Moulds in folk medicine. Folklore 100(2):162–166. https://doi.org/10.1080/0015587x.1989.9715763

    Article  Google Scholar 

  2. Van Leewenhoek A (1684) Some microscopical observations, about animals in the scurf of the teeth. Philos Trans R Soc B Biol Sci 14:568–574. https://doi.org/10.1098/rstl.1684.0030

    Article  Google Scholar 

  3. Döderlein A (1892) Das Scheidensekret und seine Bedeutung für das Puerperalfieber (The vaginal transsudate and its significance for childbed fever). Centralblatt für Bacteriologie 11:699–700. (in German)

    Google Scholar 

  4. Beijerinck MW (1901) Sur les ferments de lactique de l’industrie. (Lactic acid bacteria of the industry). Arch Neerland des sciences exactes et naturelles 6:212–243. (in French)

    Google Scholar 

  5. Cahn DR (1901) Über die nach Gram färbbaren Bacillen des Säulingsstuhles (Bacilli of infant stools stainable according to Gram). Centralblatt für Bakteriologie I. Abteilung Originale 30:721–726. (in German)

    Google Scholar 

  6. Moro E (1900) Über den Bacillus acidophilus n. spec. Ein Beitrag zur Kenntnis der normalen Darmbacterien des Säuglings (Bacillus acidophilus n. spec.). (A contribution to the knowledge of the normal intestinal bacteria of infants). Jahrbuch fär Kinderheilkunde 52:38–55. (in German)

    Google Scholar 

  7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  8. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173. https://doi.org/10.1038/nrmicro822

    Article  PubMed  Google Scholar 

  9. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8(6):769–783. https://doi.org/10.2217/fmb.13.47

    Article  CAS  PubMed  Google Scholar 

  10. Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:209–218. https://doi.org/10.4161/viru.25991

    Article  Google Scholar 

  11. Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10(3):226. https://doi.org/10.1038/146837a0.

    Article  CAS  Google Scholar 

  12. McDermott W, Rogers DE (1982) Social ramifications of control of microbial disease. Johns Hopkins Med J 151(6):302–312

    CAS  PubMed  Google Scholar 

  13. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Rev Infect Dis 10:677–678

    Google Scholar 

  14. Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511

    CAS  PubMed  Google Scholar 

  15. Petersdorf RG (1986) Whither infectious diseases? Memories, manpower, and money. J Infect Dis 153(2):189–195. https://doi.org/10.1093/infdis/153.2.189

    Article  CAS  PubMed  Google Scholar 

  16. O’Neill J (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist 20:1–16

    Google Scholar 

  17. Gaynes R (2017) The discovery of penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis 23(5):849. https://doi.org/10.3201/eid2305.161556

    Article  Google Scholar 

  18. Spellberg B (2014) The future of antibiotics. Crit Care 18:228. https://doi.org/10.1186/cc13948

    Article  PubMed  Google Scholar 

  19. Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928. https://doi.org/10.3389/fmicb.2018.02928

    Article  PubMed  Google Scholar 

  20. Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR (2018) Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol 9:2066. https://doi.org/10.3389/fmicb.2018.02066

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun D (2018) Pull in and push out: mechanisms of horizontal gene transfer in bacteria. Front Microbiol 9:2154. https://doi.org/10.3389/fmicb.2018.02154

    Article  PubMed  PubMed Central  Google Scholar 

  22. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  23. Kester JC, Fortune SM (2014) Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 49:91–101. https://doi.org/10.3109/10409238.2013.869543

    Article  CAS  PubMed  Google Scholar 

  24. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Hiroshi Morisaki J et al (2015) Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527(7578):323–328. https://doi.org/10.1038/nature16057.

    Article  CAS  PubMed  Google Scholar 

  25. Klahn P, Brönstrup M (2017) Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 34:832–885. https://doi.org/10.1039/c7np00006e

    Article  CAS  PubMed  Google Scholar 

  26. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67. https://doi.org/10.1016/j.jconrel.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  27. De Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302. https://doi.org/10.1016/j.idairyj.2009.11.008

    Article  CAS  Google Scholar 

  28. Li Z, Behrens AM, Ginat N, Tzeng SY, Lu X, Sivan S, Langer R, Jaklenec A (2018) Biofilm-inspired encapsulation of probiotics for the treatment of complex infections. Adv Mater 30:1803925. https://doi.org/10.1002/adma.201803925

    Article  CAS  Google Scholar 

  29. Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ (2011) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9(27). https://doi.org/10.1007/978-3-7908-2355-4

  30. Abedon ST, Garcia P, Mullany P, Aminov R (2017) Editorial: phage therapy: past, present and future. Front Microbiol 8:981. https://doi.org/10.3389/fmicb.2017.00981.

    Article  PubMed  Google Scholar 

  31. Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29:995–1003. https://doi.org/10.1007/s10529-007-9346-1

    Article  CAS  PubMed  Google Scholar 

  32. Andersson DI, Hughes D, Kubicek-Sutherland JZ (2016) Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 26:43–57. https://doi.org/10.1016/j.drup.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  33. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32(2):143–171. https://doi.org/10.3109/07388551.2011.594423

    Article  CAS  Google Scholar 

  34. Joo HS, Fu CI, Otto M (2016) Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc B Biol Sci 371:20150292. https://doi.org/10.1098/rstb.2015.0292.

    Article  Google Scholar 

  35. Maria-Neto S, De Almeida KC, Macedo MLR, Franco OL (2015) Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside. Biochim Biophys Acta Biomembr 1848(11):3078–3088. https://doi.org/10.1016/j.bbamem.2015.02.017

    Article  CAS  Google Scholar 

  36. Duncan B, Li XN, Landis RF, Kim ST, Gupta A, Wang LS, Ramanathan R, Tang R, Boerth JA, Rotello VM (2015) nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 9:7775–7782

    Article  CAS  Google Scholar 

  37. Kwon EJ, Skalak M, Bertucci A, Braun G, Ricci F, Ruoslahti E, Sailor MJ, Bhatia SN (2017) Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of Pseudomonas aeruginosa lung infection. Adv Mater 29:1701527. https://doi.org/10.1002/adma.201701527.

    Article  Google Scholar 

  38. Liu Y-H, Kuo S-C, Yao B-Y, Fang Z-S, Lee Y-T, Chang Y-C, Chen T-L, Hu CMJ (2018) Colistin nanoparticle assembly by coacervate complexation with polyanionic peptides for treating drug-resistant gram-negative bacteria. Acta Biomater 82:133–142. https://doi.org/10.1016/j.actbio.2018.10.013

  39. Liu Y, Shi L, Su L, Van der Mei HC, Jutte PC, Ren Y, Busscher HJ (2019) Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48(2):428–446. https://doi.org/10.1039/c7cs00807d

    Article  CAS  PubMed  Google Scholar 

  40. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551. https://doi.org/10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  41. Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427. https://doi.org/10.1039/C7CS00748E

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21620102005, 91527306, 51390483). HJB is director-owner of a consulting company, SASA BV. The authors declare no potential conflicts of interest with respect to authorship and/or publication of this chapter. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk J. Busscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Shi, L., van der Mei, H.C., Wu, W., Ren, Y., Busscher, H.J. (2020). Perspectives on and Need to Develop New Infection Control Strategies. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_5

Download citation

Publish with us

Policies and ethics