Skip to main content

Metal- and Polymer-Based Nanoparticles for Advanced Therapeutic and Diagnostic System Applications

  • Chapter
  • First Online:

Abstract

Solutions for distinct clinical conditions that arise due to the application of nanotechnology, pertaining to refined diagnostics and therapeutics, are steadily revolutionizing the medical field. Presently, distinct modalities have emerged which advocate the manipulation of nanomaterials to produce medical devices. While several of these constructs are actively being used in the clinic, a greater number are being audited for clinical safety and efficacy, and many more are under various stages of development. Nanomaterials that are frequently investigated and that have been approved for clinical use include capsules, dendrimers, polymeric nanoparticles, nanocages, nanoshells, biopolymer nanocarriers, fullerenes, carbon nanotubes, and various inorganic materials. Due to the vibrancy of the nanomedical field, novel solutions are continuously being developed and adapted to meet standard patient needs and to exceed the capabilities of antiquated hospital diagnostic and treatment systems. In this review, the integration of biomaterials and nanotechnology, to yield nanomaterial building blocks, is investigated, especially with pertinence to the fabrication of contemporary medical devices that can be used to treat or diagnose a broad range of bacterial infections. Although nanotechnology has been credited with advancing numerous clinical breakthroughs, substantial efforts must be directed toward extensive cytotoxicity, biodegradation, administration, distribution, and metabolic analyses, among other performance identifiers, prior to the adoption of nanoparticles and/or nanomaterials as dependable drug substitutes, carriers, implants, or sensor elements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sethuraman S, Krishnan UM, Subramanian A (2016) Biomaterials and nanotechnology for tissue engineering. CRC Press, Boca Raton. ISBN: 9781498743747

    Book  Google Scholar 

  2. Azam A, Arshad M, Dwivedi S, Ashraf MT (2017) Antibacterial applications of nanomaterials. Adv Struct Mater 83:143–158

    Article  Google Scholar 

  3. Bardosova M, Wagner T (2015) Nanomaterials and nanoarchitectures: a complex review of current hot topics and their applications. In: Nanomaterials and Nanoarchitectures: a complex review of current hot topics and their applications. Springer, Dordrecht, Netherlands, pp 1–343. ISBN: 9789401799218

    Chapter  Google Scholar 

  4. Williams D (2008) The relationship between biomaterials and nanotechnology. Biomaterials 29:1737–1738. https://doi.org/10.1016/j.biomaterials.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  5. Kim J, Mohamed MAA, Zagorovsky K, Chan WCW (2017) State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 146:97–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caldorera-Moore M, Peppas NA (2009) Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv Drug Deliv Rev 61:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saito Y, Luo X, Zhao C, Pan W, Chen C, Gong J, Matsumoto H, Yao J, Wu H (2015) Filling the gaps between graphene oxide: a general strategy toward nanolayered oxides. Adv Funct Mater 25:5683–5690. https://doi.org/10.1002/adfm.201501358

    Article  CAS  Google Scholar 

  8. Richards DA, Maruani A, Chudasama V (2017) Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 8:63–77. https://doi.org/10.1039/C6SC02403C

    Article  CAS  PubMed  Google Scholar 

  9. Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev 2:5883. https://doi.org/10.3402/nano.v2i0.5883

    Article  CAS  Google Scholar 

  10. Barreto ML, Teixeira MG, Carmo EH (2006) Infectious diseases epidemiology. J Epidemiol Community Health 60:192–195

    Article  PubMed  PubMed Central  Google Scholar 

  11. Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11:1842–1847. https://doi.org/10.3201/eid1112.050997

    Article  PubMed  PubMed Central  Google Scholar 

  12. Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456

    Article  CAS  PubMed  Google Scholar 

  13. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Article  CAS  PubMed  Google Scholar 

  14. Dhall A, Self W (2018) Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 7:97. https://doi.org/10.3390/antiox7080097

    Article  CAS  PubMed Central  Google Scholar 

  15. Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM (2016) Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9(4):75. https://doi.org/10.3390/ph9040075

    Article  CAS  PubMed Central  Google Scholar 

  16. Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556

    Article  CAS  PubMed  Google Scholar 

  17. Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leso V, Iavicoli I (2018) Palladium nanoparticles: toxicological effects and potential implications for occupational risk assessment. Int J Mol Sci 19(2)

    Google Scholar 

  19. Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP (2017) Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 46:4951–4975

    Article  CAS  PubMed  Google Scholar 

  20. Caro C, Castillo P, Klippstein R, Pozo D, Zaderenko AP (2010) Silver nanoparticles: sensing and imaging applications. Silver Nanoparticles, pp 201–225. ISBN: 978-953-307-028-5

    Google Scholar 

  21. Zhang Y, Nayak T, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645. https://doi.org/10.2174/1566524013666131111130058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Article  Google Scholar 

  23. Karakoti AS, Hench LL, Seal S (2006) The potential toxicity of nanomaterials—the role of surfaces. JOM 58:77–82

    Article  CAS  Google Scholar 

  24. Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan CMN, Guo MY, Ng YH, Djurišic̈ AB, Lee PKH, Chan WK, Yu LH, Phillips DL, Ma APY, Leung FCC (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183. https://doi.org/10.1002/smll.201302434

    Article  CAS  PubMed  Google Scholar 

  25. Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5:1137–1142. https://doi.org/10.1021/am302910q

    Article  CAS  PubMed  Google Scholar 

  26. Simon-Deckers A, Loo S, Mayne-L’Hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429. https://doi.org/10.1021/es9016975

    Article  CAS  PubMed  Google Scholar 

  27. Ivask A, Elbadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D, Zink JI, Cohen Y, Holden PA, Godwin HA (2014) Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8:374–386. https://doi.org/10.1021/nn4044047

    Article  CAS  PubMed  Google Scholar 

  28. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

  29. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  Google Scholar 

  30. Soltani Nezhad S, Rabbani Khorasgani M, Emtiazi G, Yaghoobi MM, Shakeri S (2014) Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance. World J Microbiol Biotechnol 30:809–817. https://doi.org/10.1007/s11274-013-1481-3

    Article  CAS  PubMed  Google Scholar 

  31. Pal S, Tak YK, Song JM (2015) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. J Biol Chem 290:1712–1720. https://doi.org/10.1128/AEM.02218-06.

    Article  Google Scholar 

  32. McQuillan JS, Shaw AM (2014) Differential gene regulation in the Ag nanoparticle and Ag(+)-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology 5390:1–8. https://doi.org/10.3109/17435390.2013.870243.

    Article  Google Scholar 

  33. McQuillan JS, Infante HG, Stokes E, Shaw AM (2012) Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6:857–866

    Article  CAS  PubMed  Google Scholar 

  34. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534. https://doi.org/10.1007/s00775-007-0208-z

    Article  CAS  PubMed  Google Scholar 

  35. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287. https://doi.org/10.1021/es1034188

    Article  CAS  PubMed  Google Scholar 

  36. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    CAS  PubMed  Google Scholar 

  37. Berthon G (2009) Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains. Pure Appl Chem 67:1117–1240

    Article  Google Scholar 

  38. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. https://doi.org/10.1128/AEM.02001-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  40. Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C 40:24–31. https://doi.org/10.1016/j.msec.2014.03.037

    Article  CAS  Google Scholar 

  41. Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976. https://doi.org/10.1021/acsami.6b00161

    Article  CAS  PubMed  Google Scholar 

  42. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686. https://doi.org/10.1021/la0202374

    Article  CAS  Google Scholar 

  43. Sohm B, Immel F, Bauda P, Pagnout C (2015) Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 15:98–113. https://doi.org/10.1002/pmic.201400101

    Article  CAS  PubMed  Google Scholar 

  44. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013(1):942916

    PubMed  PubMed Central  Google Scholar 

  45. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004. https://doi.org/10.1088/1468-6996/9/3/035004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Madl AK, Plummer LE, Carosino C, Pinkerton KE (2014) Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 76:447–465. https://doi.org/10.1146/annurev-physiol-030212-183735

    Article  CAS  PubMed  Google Scholar 

  47. Mukha IP, Eremenko AM, Smirnova NP, Mikhienkova AI, Korchak GI, Gorchev VF, Chunikhin AY (2013) Antimicrobial activity of stable silver nanoparticles of a certain size. Appl Biochem Microbiol 49:199–206. https://doi.org/10.1134/S0003683813020117

    Article  CAS  Google Scholar 

  48. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. https://doi.org/10.1021/es703238h

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, He L (2014) Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 135:45–53. https://doi.org/10.1016/j.jinorgbio.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  50. Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008. https://doi.org/10.1021/es201918f

    Article  CAS  PubMed  Google Scholar 

  51. Kodas TT (1989) Generation of complex metal oxides by aerosol processes: superconducting ceramic particles and films. Adv Mater 1:180–192

    Article  Google Scholar 

  52. Ulrich GD, Rieh JW (1982) Aggregation and growth of submicron oxide particles in flames. J Colloid Interface Sci 87:257–265. https://doi.org/10.1016/0021-9797(82)90387-3

    Article  CAS  Google Scholar 

  53. Skandan G, Chen YJ, Glumac N, Kear BH (1999) Synthesis of oxide nanoparticles in low pressure flames. Nanostruct Mater 11:149–158. https://doi.org/10.1016/S0965-9773(99)00028-8

    Article  CAS  Google Scholar 

  54. Granqvist CG, Buhrman RA (1976) Log-normal size distributions of ultrafine metal particles. Solid State Commun 18:123–126. https://doi.org/10.1016/0038-1098(76)91415-0

    Article  CAS  Google Scholar 

  55. Vorkapic D, Matsoukas T (1998) Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J Am Ceram Soc 81:2815–2820. https://doi.org/10.1111/j.1151-2916.1998.tb02701.x.

    Article  CAS  Google Scholar 

  56. Park HK, Kim DK, Kim CH (1997) Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J Am Ceram Soc 80:743–749. https://doi.org/10.1111/j.1151-2916.1997.tb02891.x

    Article  CAS  Google Scholar 

  57. Smiya S (2003) Hydrothermal processing in ceramics. In: Handbook of advanced ceramics: materials, applications, processing and properties, vol 1–2, pp 471–513. ISBN: 9780080532943

    Chapter  Google Scholar 

  58. Chang EL, Simmers C, Knight DA (2010) Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals 3:1711–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633. https://doi.org/10.1252/jcej.29.627

    Article  CAS  Google Scholar 

  60. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Takehara A, Sawaki T, Kokugan T, Shimizu M (1997) Escherichia coli damage by ceramic powder slurries. J Chem Eng Jpn 30:1034–1039. https://doi.org/10.1252/jcej.30.1034

    Article  CAS  Google Scholar 

  61. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–522. https://doi.org/10.1016/S0922-338X(98)80165-7

    Article  CAS  Google Scholar 

  62. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852. https://doi.org/10.1002/adfm.200801081

    Article  CAS  Google Scholar 

  63. Cavassin ED, de Figueiredo LFP, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin ASS, Costa SF (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnol 13:64. https://doi.org/10.1186/s12951-015-0120-6

    Article  CAS  Google Scholar 

  64. Dorobantu LS, Fallone C, Noble AJ, Veinot J, Ma G, Goss GG, Burrell RE (2015) Toxicity of silver nanoparticles against bacteria, yeast, and algae. J Nanopart Res 17:172. https://doi.org/10.1007/s11051-015-2984-7

    Article  CAS  Google Scholar 

  65. Aazam ES, Zaheer Z (2016) Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus. Bioprocess Biosyst Eng 39:575–584. https://doi.org/10.1007/s00449-016-1539-3

    Article  CAS  PubMed  Google Scholar 

  66. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128. https://doi.org/10.3109/03639049809108571

    Article  CAS  PubMed  Google Scholar 

  67. Simon-Gracia L, Hunt H, Scodeller PD, Gaitzsch J, Braun GB, Willmore a-M a, Ruoslahti E, Battaglia G, Teesalu T (2016) Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther 15:670–680. https://doi.org/10.1158/1535-7163.MCT-15-0713-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shuai X, Merdan T, Schaper AK, Xi F, Kissel T (2004) Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 15:441–448. https://doi.org/10.1021/bc034113u

    Article  CAS  PubMed  Google Scholar 

  69. Xie J, Wang CH (2005) Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharm Res 22:2079–2090. https://doi.org/10.1007/s11095-005-7782-y

    Article  CAS  PubMed  Google Scholar 

  70. Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–1704. https://doi.org/10.1016/S0142-9612(00)00292-1

    Article  CAS  PubMed  Google Scholar 

  71. Zhang X, Jackson JK, Burt HM (1996) Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm 132:195–206. https://doi.org/10.1016/0378-5173(95)04386-1

    Article  CAS  Google Scholar 

  72. Ishida O, Maruyama K, Sasaki K, Iwatsuru M (1999) Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 190:49–56. https://doi.org/10.1016/S0378-5173(99)00256-2

    Article  CAS  PubMed  Google Scholar 

  73. Jones MC, Leroux JC (1999) Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  CAS  PubMed  Google Scholar 

  74. Gagliardini E, Conti S, Benigni A, Remuzzi G, Remuzzi A (2010) Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J Am Soc Nephrol 21:2081–2089. https://doi.org/10.1681/ASN.2010020199

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Kataoka K (1994) Development of micelle-forming polymeric drug with superior anticancer activity. In: Polymeric drugs and drug administration, vol 545, pp 126–134. ISBN: 0097-6156r0-8412-2744-6

    Chapter  Google Scholar 

  76. Hao Y-L, Deng Y-J, Chen Y, Wang K-Z, Hao A-J, Zhang Y (2005) In-vitro cytotoxicity, in-vivo biodistribution and anti-tumour effect of PEGylated liposomal topotecan. J Pharm Pharmacol 57:1279–1287. https://doi.org/10.1211/jpp.57.10.0006

    Article  CAS  PubMed  Google Scholar 

  77. Fujioka K (1998) Protein release from collagen matrices. Adv Drug Deliv Rev 31:247–266. https://doi.org/10.1016/S0169-409X(97)00119-1

    Article  CAS  PubMed  Google Scholar 

  78. Tabata Y, Ikada Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31:287–301. https://doi.org/10.1016/S0169-409X(97)00125-7.

    Article  CAS  PubMed  Google Scholar 

  79. Dumitriu S, Chornet E (1998) Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv Drug Deliv Rev 31:223–246. https://doi.org/10.1016/S0169-409X(97)00120-8.

    Article  CAS  PubMed  Google Scholar 

  80. Lambert G, Fattal E, Couvreur P (2001) Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 47:99–112

    Article  CAS  PubMed  Google Scholar 

  81. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  82. Brinkhuis RPRP, Rutjes FPJT, van Hest JCM (2011) Polymeric vesicles in biomedical applications. Polym Chem 2:1449. https://doi.org/10.1039/c1py00061f

    Article  CAS  Google Scholar 

  83. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603. https://doi.org/10.1126/science.8128245

    Article  CAS  PubMed  Google Scholar 

  84. Ishida T, Kiwada H (2008) Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm 354:56–62

    Article  CAS  PubMed  Google Scholar 

  85. Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K (2018) Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 47:8572–8610. https://doi.org/10.1039/c8cs00162f

    Article  CAS  PubMed  Google Scholar 

  86. Jia L, Zheng JJ, Jiang SM, Huang KH (2010) Preparation, physicochemical characterization and cytotoxicity in vitro of gemcitabine-loaded PEG-PDLLA nanovesicles. World J Gastroenterol 16:1008–1013. https://doi.org/10.3748/wjg.v16.i8.1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ (2014) PH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32:693–710

    Article  CAS  PubMed  Google Scholar 

  88. Zastre JA, Jackson JK, Wong W, Burt HM (2008) P-glycoprotein efflux inhibition by amphiphilic diblock copolymers: relationship between copolymer concentration and substrate hydrophobicity. Mol Pharm 5:643–653

    Article  CAS  PubMed  Google Scholar 

  89. Bruni S, Chang TM (1989) Hepatocytes immobilised by microencapsulation in artificial cells: effects on hyperbilirubinemia in Gunn rats. Biomater Artif Cells Artif Organs 17:403–411. https://doi.org/10.3109/10731198909118855

    Article  CAS  PubMed  Google Scholar 

  90. Chang TMS (1972) Artificial cells. Charles C. Thomas, Springfield

    Google Scholar 

  91. Lopes de Menezes DE, Pilarski LM, Allen TM (1998) In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 58:3320–3330

    CAS  PubMed  Google Scholar 

  92. Trubetskoy VS (1999) Polymeric micelles as carriers of diagnostic agents. Adv Drug Deliv Rev 37:81–88

    Article  CAS  PubMed  Google Scholar 

  93. Delgado A, Soriano I, Sánchez E, Oliva M, Évora C (2000) Radiolabelled biodegradable microspheres for lung imaging. Eur J Pharm Biopharm 50:227–236. https://doi.org/10.1016/S0939-6411(00)00109-0.

    Article  CAS  PubMed  Google Scholar 

  94. Spulber M, Baumann P, Liu J, Palivan CG (2015) Ceria loaded nanoreactors: a nontoxic superantioxidant system with high stability and efficacy. Nanoscale 7:1411–1423. https://doi.org/10.1039/C4NR02748E

    Article  CAS  PubMed  Google Scholar 

  95. Geilich BM, Singleton GL, Van De Ven AL, Sridhar S, Webster TJ (2014) Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections. In: Proceedings of the IEEE annual northeast bioengineering conference, NEBEC, vol 2014-Decem

    Google Scholar 

  96. Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ (2017) Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials 119:78–85. https://doi.org/10.1016/j.biomaterials.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  97. Langowska K, Palivan CG, Meier W (2013) Polymer nanoreactors shown to produce and release antibiotics locally. Chem Commun 49:128–130. https://doi.org/10.1039/c2cc36345c

    Article  CAS  Google Scholar 

  98. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289. https://doi.org/10.4103/0975-7406.72127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Blasiak B, Van Veggel FCJM, Tomanek B (2013) Applications of nanoparticles for MRI cancer diagnosis and therapy. J Nanomater 2013:148578

    Article  Google Scholar 

  100. Lefevre S, Ruimy D, Jehl F, Neuville A, Robert P, Sordet C, Ehlinger M, Dietemann J-L, Bierry G (2011) Septic arthritis: monitoring with USPIO-enhanced macrophage MR imaging. Radiology 258:722–728. https://doi.org/10.1148/radiol.10101272

    Article  PubMed  Google Scholar 

  101. Neuwelt A, Sidhu N, Hu CAA, Mlady G, Eberhardt SC, Sillerud LO (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol 204:W302–W313. https://doi.org/10.2214/AJR.14.12733

    Article  Google Scholar 

  102. Wang YXJ (2015) Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol 21:13400–13402. https://doi.org/10.3748/wjg.v21.i47.13400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qian W, Murakami M, Ichikawa Y, Che Y (2011) Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J Phys Chem C 115:23293–23298. https://doi.org/10.1021/jp2079567

    Article  CAS  Google Scholar 

  104. Hamm L, Gee A, Indrasekara ASDS (2019) Recent advancement in the surface-enhanced Raman spectroscopy-based biosensors for infectious disease diagnosis. Appl Sci 9:1448. https://doi.org/10.3390/app9071448

    Article  CAS  Google Scholar 

  105. Alvand A, Rezapoor M, Parvizi J (2017) The role of biomarkers for the diagnosis of implant-related infections in orthopaedics and trauma. Adv Exp Med Biol 971:69–79

    Article  PubMed  Google Scholar 

  106. Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN (2012) Drug release from electric-field-responsive nanoparticles. ACS Nano 6:227–233. https://doi.org/10.1021/nn203430m

    Article  CAS  PubMed  Google Scholar 

  107. Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134

    Article  CAS  PubMed  Google Scholar 

  108. Stewart S, Priore RJ, Nelson MP, Treado PJ (2012) Raman Imaging. Annu Rev Anal Chem 5:337–360. https://doi.org/10.1146/annurev-anchem-062011-143152

    Article  CAS  Google Scholar 

  109. Ackermann K, Bohme R, Cialla D, Dorfer T, Marz A, Moller R, Popp J, Strelau K. Surface enhanced Raman spectroscopy. http://www.photonics4life.eu/index.php/layout/set/print/Consortium/P4L-DB/All-items/Surface-enhanced-Raman-Spectroscopy

  110. Fargašová A, Balzerová A, Prucek R, Sedláková MH, Bogdanová K, Gallo J, Kolář M, Ranc V, Zbořil R (2017) Detection of prosthetic joint infection based on magnetically assisted surface enhanced Raman spectroscopy. Anal Chem 89:6598–6607. https://doi.org/10.1021/acs.analchem.7b00759

    Article  CAS  PubMed  Google Scholar 

  111. Pavlou E, Zhang X, Wang J, Kourkoumelis N (2018) Raman spectroscopy for the assessment of osteoarthritis. Ann Joint 3:83–83. https://doi.org/10.21037/aoj.2018.09.10

    Article  Google Scholar 

  112. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2):147–166

    Article  CAS  PubMed  Google Scholar 

  113. Jin S, Leach JC, Ye K (2009) Nanoparticle-mediated gene delivery. Methods Mol Biol. https://doi.org/10.1007/978-1-59745-483-4_34

  114. Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9(1):37–52. https://doi.org/10.1002/cmmi.1551

    Article  CAS  PubMed  Google Scholar 

  115. Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18(3):241–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elkady MF, Shokry Hassan H, Hafez EE, Fouad A (2015) Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria. Bioinorg Chem Appl 2015:536854. https://doi.org/10.1155/2015/536854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Khodashenas B, Ghorbani HR (2015) Synthesis of silver nanoparticles with different shapes. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.12.014

  118. Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M (2017) In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet Scand 59:49. https://doi.org/10.1186/s13028-017-0317-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goldman E, Zinger A, Da Silva D, Yaari Z, Kajal A, Vardi-Oknin D, Goldfeder M, Schroeder JE, Shainsky-Roitman J, Hershkovitz D, Schroeder A (2017) Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology 28(43):43LT01. https://doi.org/10.1088/1361-6528/aa8a3d

    Article  CAS  PubMed  Google Scholar 

  120. Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  121. Ventola CL (2012) The nanomedicine revolution. P T 37(9):512–517, 525

    PubMed  PubMed Central  Google Scholar 

  122. Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc 1724:020048

    Article  Google Scholar 

  123. Skotland T, Iversen T, Sandvig K (2014) Development of nanoparticles for clinical use. Nanomedicine (Lond) 9:1295–1299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bassous, N.J., Webster, T.J. (2020). Metal- and Polymer-Based Nanoparticles for Advanced Therapeutic and Diagnostic System Applications. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_16

Download citation

Publish with us

Policies and ethics