Skip to main content

Advances in Polysaccharide-Based Antimicrobial Delivery Vehicles

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Antimicrobial resistance is one of the major causes for morbidity and mortality in sepsis patients. Trying to circumvent the challenge with newer antibiotics has led to the drug misuse and bacterial recalcitrance. Recently, polysaccharides have proffered inexplicable contributions in the field of antimicrobial drug delivery. Structural hierarchy and tunability in biochemical and mechanical properties make polysaccharides unique. Some of the polysaccharides in the naïve state itself pose antimicrobial properties in inhibiting bacterial colonization via blocking carbohydrate receptor associated with host–bacterial responses. While, rest of the saccharides upon modification delivers antibacterial drugs onto targeted sites with sustained or burst release depending upon the need. Ongoing research keeps pace in promoting polysaccharides for local as well as systemic therapy due to its attractive features, mainly biocompatibility, mechanical strength, stimuli responsiveness, protein affinity and reduced toxicity. This chapter presents the updates of prominent polysaccharides involved in the field of antimicrobial drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suryavanshi AV, Borse V, Pawar V, Sindhu KR, Srivastava R (2016) Material advancements in bone-soft tissue fixation devices. Sci Adv Today 2:25236

    Google Scholar 

  2. Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE, Lee KS et al (2012) The antimicrobial and osteoinductive properties of silver nanoparticle/poly (dl-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 33:8745–8756. https://doi.org/10.1016/j.biomaterials.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  3. Riool M, De Boer L, Jaspers V, Loos CMVD, Wamel WB, Wu G et al (2014) Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomater 10:5202–5212. https://doi.org/10.1016/j.actbio.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  4. Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G (2016) Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci 17:334–352. https://doi.org/10.3390/ijms17030334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borse V, Pawar V, Shetty G, Mullaji A, Srivastava R (2016) Nanobiotechnology perspectives on prevention and treatment of ortho-paedic implant associated infection. Curr Drug Deliv 13:175–185. https://doi.org/10.2174/1567201812666150812141849

    Article  CAS  PubMed  Google Scholar 

  6. Biedenbach DJ, Moet GJ, Jones RN (2004) Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997-2002). Diagn Microbiol Infect Dis 50:59–69. https://doi.org/10.1016/j.diagmicrobio.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Brusselaers N, Vogelaers D, Blot S (2011) The rising problem of antimicrobial resistance in the intensive care unit. Ann Intensive Care 1:47–54. https://doi.org/10.1186/2110-5820-1-47

    Article  PubMed  PubMed Central  Google Scholar 

  8. Campoccia D, Montanaro L, Arciola CR (2013) A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 34:8018–8029. https://doi.org/10.1016/j.biomaterials.2013.07.048

    Article  CAS  PubMed  Google Scholar 

  9. Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR et al (2018) Micro and nanotechnologies for bone regeneration: recent advances and emerging designs. J Control Release 274:35–55. https://doi.org/10.1016/j.jconrel.2018.01.032

    Article  CAS  PubMed  Google Scholar 

  10. Engelking L (2008) Polysaccharides and carbohydrate structure. In: Textbook of veterinary physiological chemistry, 3rd edn. Elsevier, Amsterdam, pp 270–279. https://doi.org/10.1111/j.1939-165x.2005.tb00053.x

    Chapter  Google Scholar 

  11. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662. https://doi.org/10.1016/j.addr.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  12. Bacic A, Fincher GB, Stone AB (2009) Chemistry, biochemistry, and biology of 1-3 Beta glucans and related polysaccharides, 1st edn. Elsevier, Amsterdam, pp 1–350. https://doi.org/10.1016/B978-0-12-373971-1.X0001-5

    Book  Google Scholar 

  13. Gupta BS, Edwards JV (2009) Textile materials and structures for wound care products. In: Rajendran S (ed) Advanced textiles for wound care. Woodhead Publishing Series in Textiles, Boca Raton, New York, London, pp 48–96. https://doi.org/10.1533/9781845696306.1.48

    Chapter  Google Scholar 

  14. Sebaaly C, Kassem S, Grishina E, Kanaan H, Sweidan A, Chmit MS et al (2014) Anticoagulant and antibacterial activities of polysaccharides of red algae Corallina collected from lebanese coast. J Appl Pharm Sci 4:30–37. https://doi.org/10.7324/JAPS.2014.40406

    Article  Google Scholar 

  15. Thunyakipisal P, Saladyanant T, Hongprasong N, Pongsamart S, Apinhasmit W (2010) Antibacterial activity of polysaccharide gel extract from fruit rinds of durio zibethinus murr. against oral pathogenic bacteria. J Investig Clin Dent 89:74–75. https://doi.org/10.1111/j.2041-1626.2010.00017.x

    Article  Google Scholar 

  16. Zhang N, Wardwell PR, Bader RA (2013) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5:329–352. https://doi.org/10.3390/pharmaceutics5020329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng Y, Bai L, Zhou Y, Tong R, Zeng M, Li X et al (2019) Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 121:1240–1253. https://doi.org/10.1016/j.ijbiomac.2018.10.072

    Article  CAS  PubMed  Google Scholar 

  18. Wasupalli GK, Verma D (2018) Polysaccharides as biomaterials. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing Series in Biomaterials, London, pp 37–70. https://doi.org/10.1016/B978-0-08-102194-1.00003-7

    Chapter  Google Scholar 

  19. Liu L, Li M, Yu M, Shen M, Wang Q, Yu Y et al (2019) Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. Int J Biol Macromol 121:743–751. https://doi.org/10.1016/j.ijbiomac.2018.10.083

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5:31–61. https://doi.org/10.1016/j.bcdf.2014.12.001

    Article  CAS  Google Scholar 

  21. Han G, Wang F, Chen Q, Liu F, Shao X, Ling P (2017) Recent advances in polysaccharides for osteoarthritis therapy. Eur J Med Chem 139:926–935. https://doi.org/10.1016/j.ejmech.2017.08.048

    Article  CAS  PubMed  Google Scholar 

  22. Shi L (2016) Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. Int J Biol Macromol 92:37–48. https://doi.org/10.1016/j.ijbiomac.2016.06.100

    Article  CAS  PubMed  Google Scholar 

  23. Lin Z, Zhang H (2004) Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 25:1387–1395

    CAS  PubMed  Google Scholar 

  24. Zheng R, Jie S, Hanchuan D, Moucheng W (2005) Characterization and immunomodulating activities of polysaccharide from Lentinus edodes. Int Immunopharmacol 5:811–820. https://doi.org/10.1016/j.intimp.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  25. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438. https://doi.org/10.1016/j.carbpol.2011.06.066

    Article  CAS  Google Scholar 

  26. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233. https://doi.org/10.1016/j.addr.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  27. Pawar V, Srivastava R (2016) Layered assembly of chitosan nanoparticles and alginate gel for management of post-surgical pain and infection. In: 16th Int. Conf. Nanotechnol. - IEEE NANO 2016, pp 241–244. https://doi.org/10.1109/NANO.2016.7751388

    Chapter  Google Scholar 

  28. Pawar V, Topkar H, Srivastava R (2018) Chitosan nanoparticles and povidone iodine containing alginate gel for prevention and treatment of orthopedic implant associated infections. Int J Biol Macromol 115:1131–1141. https://doi.org/10.1016/j.ijbiomac.2018.04.166

    Article  CAS  PubMed  Google Scholar 

  29. Pawar V, Borse V, Thakkar R, Srivastava R (2018) Dual-purpose injectable doxorubicin conjugated alginate gel containing polycaprolactone microparticles for anti-cancer and anti-inflammatory therapy. Curr Drug Deliv 15:716–726. https://doi.org/10.2174/1567201814666171013151750

    Article  CAS  PubMed  Google Scholar 

  30. Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids 355:2472–2479. https://doi.org/10.1016/j.jnoncrysol.2009.08.038

    Article  CAS  Google Scholar 

  31. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58:487–499. https://doi.org/10.1016/j.addr.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  32. Gaber M, Mabrouk MT, Freag MS, Khiste SK, Fang JY, Elkhodairy KA et al (2018) Protein-polysaccharide nanohybrids: hybridization techniques and drug delivery applications. Eur J Pharm Biopharm 133:42–62. https://doi.org/10.1016/j.ejpb.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  33. Khemakhem I, Abdelhedi O, Trigui I, Ayadi MA, Bouaziz M (2018) Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int J Biol Macromol 106:425–432. https://doi.org/10.1016/j.ijbiomac.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  34. Hirosawa S, Takahashi Y, Hashizume H, Miyake T, Akamatsu Y (2014) Synthesis and antibacterial activity of tripropeptin C derivatives modified at the carboxyl groups. J Antibiot (Tokyo) 67:265–268. https://doi.org/10.1038/ja.2013.128

    Article  CAS  Google Scholar 

  35. Ma YL, Zhu DY, Thakur K, Wang CH, Wang H, Ren YF et al (2018) Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int J Biol Macromol 111:92–101. https://doi.org/10.1016/j.ijbiomac.2017.12.154

    Article  CAS  PubMed  Google Scholar 

  36. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10:27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  38. Niekraszewicz A (2005) Chitosan medical dressings. Fibres Text East Eur 13:16–18. https://doi.org/10.1111/1468-2427.00255

    Article  CAS  Google Scholar 

  39. Harkins AL, Duri S, Kloth LC, Tran CD (2014) Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. J Biomed Mater Res Pt B Appl Biomater 102:1199–1206. https://doi.org/10.1002/jbm.b.33103

    Article  CAS  Google Scholar 

  40. You J, Li W, Yu C, Zhao C, Jin L, Zhou Y et al (2013) Amphiphilically modified chitosan cationic nanoparticles for drug delivery. J Nanopart Res 15:1–10. https://doi.org/10.1007/s11051-013-2123-2

    Article  CAS  Google Scholar 

  41. Pawar V, Dhanka M, Srivastava R (2018) Cefuroxime conjugated chitosan hydrogel for treatment of wound infections. Colloids Surf B Biointerfaces 173:776–787. https://doi.org/10.1016/j.colsurfb.2018.10.034

    Article  CAS  PubMed  Google Scholar 

  42. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700. https://doi.org/10.1016/j.carres.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  43. Ibrahim HM, El-Bisi MK, Taha GM, El-Alfy EA (2015) Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial. J Appl Pharm Sci 5:85–90. https://doi.org/10.7324/JAPS.2015.501015

    Article  CAS  Google Scholar 

  44. Madureira AR, Pereira A, Castro PM, Pintado M (2015) Production of antimicrobial chitosan nanoparticles against food pathogens. J Food Eng 167:210–216. https://doi.org/10.1016/j.jfoodeng.2015.06.010

    Article  CAS  Google Scholar 

  45. Elbi S, Biswas R, Baranwal G, Sathianarayanan S, Rajan VK, Jayakumar R et al (2017) Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces 160:40–47. https://doi.org/10.1016/j.colsurfb.2017.09.003

    Article  CAS  Google Scholar 

  46. Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L et al (2015) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.00372

    Article  Google Scholar 

  47. Pintado MM, Tavaria FK, Silva S, Costa EM, Veiga M (2018) Exploring chitosan nanoparticles as effective inhibitors of antibiotic resistant skin microorganisms—from in vitro to ex vitro testing. Carbohydr Polym 201:340–346. https://doi.org/10.1016/j.carbpol.2018.08.083

    Article  CAS  PubMed  Google Scholar 

  48. Wu T, Wu C, Fu S, Wang L, Yuan C, Chen S et al (2017) Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydr Polym 155:192–200. https://doi.org/10.1016/j.carbpol.2016.08.076

    Article  CAS  PubMed  Google Scholar 

  49. Jeon SJ, Oh M, Yeo WS, Galvão KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS One 9:e92723. https://doi.org/10.1371/journal.pone.0092723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma Z, Kim D, Adesogan AT, Ko S, Galvao K, Jeong KC (2016) Chitosan microparticles exert broad-spectrum antimicrobial activity against antibiotic-resistant micro-organisms without increasing resistance. ACS Appl Mater Interfaces 8:10700–10709. https://doi.org/10.1021/acsami.6b00894

    Article  CAS  PubMed  Google Scholar 

  51. Jeon SJ, Ma Z, Kang M, Galvão KN, Jeong KC (2016) Application of chitosan microparticles for treatment of metritis and in vivo evaluation of broad spectrum antimicrobial activity in cow uteri. Biomaterials 110:71–80. https://doi.org/10.1016/j.biomaterials.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  52. Shen J, Jin B, Qi YC, Jiang Q, Gao XF (2017) Carboxylated chitosan/silver-hydroxyapatite hybrid microspheres with improved antibacterial activity and cytocompatibility. Mater Sci Eng C 78:589–597. https://doi.org/10.1016/j.msec.2017.03.100

    Article  CAS  Google Scholar 

  53. Liu Z, Wang C, Liu Y, Peng D (2017) Cefepime loaded O-carboxymethyl chitosan microspheres with sustained bactericidal activity and enhanced biocompatibility. J Biomater Sci Polym Ed 28:79–92. https://doi.org/10.1080/09205063.2016.1244372

    Article  CAS  PubMed  Google Scholar 

  54. Mantripragada VP, Jayasuriya AC (2016) Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. Mater Sci Eng C 67:409–417. https://doi.org/10.1016/j.msec.2016.05.033

    Article  CAS  Google Scholar 

  55. Saranya TS, Rajan VK, Biswas R, Jayakumar R, Sathianarayanan S (2018) Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int J Biol Macromol 110:227–233. https://doi.org/10.1016/j.ijbiomac.2017.12.044

    Article  CAS  PubMed  Google Scholar 

  56. Thaya R, Vaseeharan B, Sivakamavalli J, Iswarya A, Govindarajan M, Alharbi NS et al (2018) Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multi-drug resistant microbial pathogens. Microb Pathog 114:17–24. https://doi.org/10.1016/j.micpath.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  57. Abdelbary G (2011) Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 16:44–56. https://doi.org/10.3109/10837450903479988

    Article  CAS  PubMed  Google Scholar 

  58. Norowski PA, Courtney HS, Babu J, Haggard WO, Bumgardner JD (2011) Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dent 20:56–67. https://doi.org/10.1097/ID.0b013e3182087ac4

    Article  PubMed  Google Scholar 

  59. Noel SP, Courtney H, Bumgardner JD, Haggard WO (2008) Chitosan films: a potential local drug delivery system for antibiotics. Clin Orthop Relat Res 466:1377–1382. https://doi.org/10.1007/s11999-008-0228-1

    Article  PubMed  PubMed Central  Google Scholar 

  60. Smith JK, Bumgardner JD, Courtney HS, Smeltzer MS, Haggard O (2015) Antibiotic-loaded chitosan film for infection prevention: a preliminary in vitro characterization. J Biomed Mater Res Pt B Appl Biomater 94:203–211. https://doi.org/10.1002/jbm.b.31642.Antibiotic-loaded

    Article  Google Scholar 

  61. Oungbho K, Müller BW (1997) Chitosan sponges as sustained release drug carriers. Int J Pharm 156:229–237. https://doi.org/10.1016/S0378-5173(97)00201-9

    Article  CAS  Google Scholar 

  62. Chen Aimin DZ, Chunlin H, Juliang B, Tinyin Z (1999) Antibiotic loaded chitosan bar—an in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res 366:239–247. PMID: 10627741

    Article  Google Scholar 

  63. Noel SP, Courtney HS, Bumgardner JD, Haggard WO (2010) Chitosan sponges to locally deliver amikacin and vancomycin: a pilot in vitro evaluation. Clin Orthop Relat Res:2074–2080. https://doi.org/10.1007/s11999-010-1324-6

  64. Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR (2011) Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother 55:3432–3438. https://doi.org/10.1128/AAC.01803-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hao JY, Mi FL, Shyu SS, Wu YB, Schoung JY, Tsai YH et al (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59:438–449. https://doi.org/10.1002/jbm.1260

    Article  CAS  PubMed  Google Scholar 

  66. Phaechamud T, Charoenteeraboon J (2008) Antibacterial activity and drug release of chitosan sponge containing doxycycline hyclate. AAPS PharmSciTech 9:829–835. https://doi.org/10.1208/s12249-008-9117-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pawar V, Bulbake U, Khan W, Srivastava R (2019) Chitosan sponges as a sustained release carrier system for theprophylaxis of orthopedic implant-associated infections. Int J Biol Macromol 134:100–112. https://doi.org/10.1016/j.ijbiomac.2019.04.190

    Article  CAS  PubMed  Google Scholar 

  68. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. https://doi.org/10.1016/j.addr.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  69. Harris M, Alexander C, Wells CM, Bumgardner JD, Carpenter DP, Jennings JA (2017) Chitosan for the delivery of antibiotics. In: Jessica Jennings JB (ed) Chitosan based biomater, 1st edn. Elsevier Publishing, Amsterdam, pp 147–173. https://doi.org/10.1016/B978-0-08-100228-5.00006-7

    Chapter  Google Scholar 

  70. Meng G, He J, Wu Y, Wu F, Gu Z (2014) Antibiotic-loaded chitosan hydrogel with superior dual functions: antibacterial efficacy and osteoblastic cell responses. ACS Appl Mater Interfaces 6:10005–10013. https://doi.org/10.1021/am502537k

    Article  CAS  PubMed  Google Scholar 

  71. Chen CP, Hsieh CM, Tsai T, Yang JC, Chen CT (2015) Optimization and evaluation of a chitosan/hydroxypropyl methylcellulose hydrogel containing toluidine blue O for antimicrobial photodynamic inactivation. Int J Mol Sci 16:20859–20872. https://doi.org/10.3390/ijms160920859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grumezescu AM, Andronescu E, Ficai A, Bleotu C, Mihaiescu DE, Chifiriuc MC (2012) Synthesis, characterization and in vitro assessment of the magnetic chitosan-carboxymethylcellulose biocomposite interactions with the prokaryotic and eukaryotic cells. Int J Pharm 436:771–777. https://doi.org/10.1016/j.ijpharm.2012.07.063

    Article  CAS  PubMed  Google Scholar 

  73. Skjk-Braek G, Grasdalen H, Larsen B (1986) Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr Res 154:239–250. https://doi.org/10.1016/S0008-6215(00)90036-3

    Article  Google Scholar 

  74. Sachan NK, Pushkar S, Jha A, Bhattcharya A (2009) Sodium alginate: the wonder polymer for controlled drug delivery. J Pharm Res 2:1191–1199

    Google Scholar 

  75. Dawn Hunt S (2016) Self-care and postoperative dressing management. Br J Nurs 25:1–6. https://doi.org/10.12968/bjon.2016.25.15.s34

    Article  Google Scholar 

  76. Cooper C (2013) Fundamentals of hand therapy: clinical reasoning and treatment guidelines for common diagnoses of the upper extremity. In: Cooper C (ed) Wound care, 2nd edn. Elsevier, Amsterdam, pp 206–218. https://doi.org/10.1016/C2011-0-05791-5

    Chapter  Google Scholar 

  77. Leveriza-Oh M, Phillips TJ (2012) Dressings and postoperative care. In: Dockery GD, Crawford ME (eds) Lower extremtremity soft tissue cutaneous plastic surgery, 2nd edn. Elsevier, Amsterdam, pp 478–488. https://doi.org/10.1016/B978-0-323-02752-6.50013-4

    Chapter  Google Scholar 

  78. Rinaudo M (2014) Biomaterials based on a natural polysaccharide: alginate. TIP 17:92–96. https://doi.org/10.1016/s1405-888x(14)70322-5

    Article  Google Scholar 

  79. Koehler J, Brandl FP, Goepferich AM (2018) Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 100:1–11. https://doi.org/10.1016/j.eurpolymj.2017.12.046

    Article  CAS  Google Scholar 

  80. Percival SL, McCarty SM (2014) Silver and alginates: role in wound healing and biofilm control. Adv Wound Care 4:407–414. https://doi.org/10.1089/wound.2014.0541

    Article  Google Scholar 

  81. Simoes D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141. https://doi.org/10.1016/j.ejpb.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  82. Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521. https://doi.org/10.1111/j.1524-475X.2009.00503.x

    Article  PubMed  Google Scholar 

  83. Rafiq M, Hussain T, Abid S, Nazir A, Masood R (2018) Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Mater Res Express 5:035007. https://doi.org/10.1088/2053-1591/aab0b4

    Article  CAS  Google Scholar 

  84. Varaprasad K, Raghavendra GM, Jayaramudu T, Seo J (2016) Nano zinc oxide-sodium alginate antibacterial cellulose fibres. Carbohydr Polym 135:349–355. https://doi.org/10.1016/j.carbpol.2015.08.078

    Article  CAS  PubMed  Google Scholar 

  85. Paques JP, Van Der Linden E, Van Rijn CJM, Sagis LMC (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:163–171. https://doi.org/10.1016/j.cis.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  86. Li P, Dai YN, Zhang JP, Wang AQ, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228. PMID: 23675094

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Trandafilović LV, Božanić DK, Dimitrijević-Branković S, Luyt AS, Djoković V (2012) Fabrication and antibacterial properties of ZnO-alginate nanocomposites. Carbohydr Polym 88:263–269. https://doi.org/10.1016/j.carbpol.2011.12.005

    Article  CAS  Google Scholar 

  88. Pandey S, Ramontja J (2016) Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. Int J Biol Macromol 93:712–723. https://doi.org/10.1016/j.ijbiomac.2016.09.033

    Article  CAS  PubMed  Google Scholar 

  89. Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A et al (2013) Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol 133:1231–1239. https://doi.org/10.1038/jid.2012.399

    Article  CAS  PubMed  Google Scholar 

  90. Liu J, Xiao J, Li F, Shi Y, Li D, Huang Q (2018) Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: preparation, characterization and antimicrobial activity. Food Control 91:302–310. https://doi.org/10.1016/j.foodcont.2018.04.020

    Article  CAS  Google Scholar 

  91. Costa JR, Silva NC, Sarmento B, Pintado M (2015) Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis 34:1255–1262. https://doi.org/10.1007/s10096-015-2344-7

    Article  CAS  PubMed  Google Scholar 

  92. Ozseker EE, Akkaya A (2016) Development of a new antibacterial biomaterial by tetracycline immobilization on calcium-alginate beads. Carbohydr Polym 151:441–451. https://doi.org/10.1016/j.carbpol.2016.05.073

    Article  CAS  PubMed  Google Scholar 

  93. Guler S, Ozseker EE, Akkaya A (2016) Developing an antibacterial biomaterial. Eur Polym J 84:326–337. https://doi.org/10.1016/j.eurpolymj.2016.09.031

    Article  CAS  Google Scholar 

  94. Hebeish A, Ramadan M, Montaser A, Krupa I, Farag A (2015) Molecular characteristics and antibacterial activity of alginate beads coated chitosan polyacrylonitrile copolymer loaded silver nanocomposite. J Sci Res Rep 5:479–488. https://doi.org/10.9734/jsrr/2015/14775

    Article  Google Scholar 

  95. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14. https://doi.org/10.1016/j.jconrel.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  96. Nam SY, Nho YC, Hong SH, Chae GT, Jang HS, Suh TS et al (2004) Evaluations of poly(vinyl alcohol)/alginate hydrogels cross-linked by γ-ray irradiation technique. Macromol Res 12:219–224. https://doi.org/10.1007/BF03218391

    Article  CAS  Google Scholar 

  97. George L, Bavya MC, Rohan KV, Srivastava R (2017) A therapeutic polyelectrolyte–vitamin C nanoparticulate system in polyvinyl alcohol–alginate hydrogel: an approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B Biointerfaces 160:315–324. https://doi.org/10.1016/j.colsurfb.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  98. Kesavan K, Nath G, Pandit JK (2010) Sodium alginate based mucoadhesive system for gatifloxacin and its in vitro antibacterial activity. Sci Pharm 78:941–957. https://doi.org/10.3797/scipharm.1004-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sharma S, Sanpui P, Chattopadhyay A, Ghosh SS (2012) Fabrication of antibacterial silver nanoparticle—sodium alginate-chitosan composite films. RSC Adv 2:5837–5843. https://doi.org/10.1039/c2ra00006g

    Article  CAS  Google Scholar 

  100. Whistler RL, BeMiller JN (2012) Industrial gums: polysaccharides and their derivatives, 3rd edn. Wiley Academic Press, San Diego, New York, Boston, pp 234–251. https://doi.org/10.1016/C2009-0-03188-2

    Book  Google Scholar 

  101. Roy S, Rhim JW (2019) Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocoll 90:500–507. https://doi.org/10.1016/j.foodhyd.2018.12.056

    Article  CAS  Google Scholar 

  102. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Hosseini SM et al (2014) Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym 101:582–591. https://doi.org/10.1016/j.carbpol.2013.09.070

    Article  CAS  PubMed  Google Scholar 

  103. Briones AV, Sato T, Bigol UG (2014) Antibacterial activity of polyethylenimine/carrageenan multilayer against pathogenic bacteria. Adv Chem Eng Sci 4:233–241. https://doi.org/10.4236/aces.2014.42026

    Article  CAS  Google Scholar 

  104. El-Fawal G (2014) Preparation, characterization and antibacterial activity of biodegradable films prepared from carrageenan. J Food Sci Technol 51:2234–2239. https://doi.org/10.1007/s13197-013-1255-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cevher E, Mülazimoglu L, Gürcan D, Alper M, Araman A, Özsoy Y (2006) The preparation of ciprofloxacin hydrochloride-loaded chitosan and pectin microspheres their evaluation in an animal osteomyelitis model. J Bone Joint Surg Br 88:270–275. https://doi.org/10.1302/0301-620X.88B2.16328

    Article  PubMed  Google Scholar 

  106. Dacarro G, Curtosi S, Milanese C, D’Agostino A, Bertoglio F, Taglietti A et al (2017) Silver nanoparticles synthesized and coated with pectin: an ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J Colloid Interface Sci 498:271–281. https://doi.org/10.1016/j.jcis.2017.03.062

    Article  CAS  PubMed  Google Scholar 

  107. Martínez YN, Cavello I, Hours R, Cavalitto S, Castro GR (2013) Immobilized keratinase and enrofloxacin loaded on pectin PVA cryogel patches for antimicrobial treatment. Bioresour Technol 145:280–284. https://doi.org/10.1016/j.biortech.2013.02.063

    Article  CAS  PubMed  Google Scholar 

  108. Bayón B, Bucalá V, Castro GR (2016) Development of antimicrobial hybrid mesoporous silver phosphate-pectin microspheres for control release of levofloxacin. Micropor Mesopor Mater 226:71–78. https://doi.org/10.1016/j.micromeso.2015.12.041

    Article  CAS  Google Scholar 

  109. da Silva EP, Sitta DA, Fragal VH, Cellet TP, Mauricio MR, Garcia FP et al (2014) Covalent TiO2/pectin microspheres with Fe3O4 nanoparticles for magnetic field-modulated drug delivery. Int J Biol Macromol 67:43–52. https://doi.org/10.1016/j.ijbiomac.2014.02.035

    Article  CAS  PubMed  Google Scholar 

  110. Nešić A, Onjia A, Davidović S, Dimitrijević S, Errico ME, Santagata G et al (2017) Design of pectin-sodium alginate based films for potential healthcare application: study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity. Carbohydr Polym 157:981–990. https://doi.org/10.1016/j.carbpol.2016.10.054

    Article  CAS  PubMed  Google Scholar 

  111. Polifka JE, Habermann J (2014) Anticoagulants, thrombocyte aggregation inhibitors, fibrinolytics and volume replacement agents. In: Schaefer RKMC, Peters P (eds) Drugs during pregnancy and lactation: treatment options and risk assessment, 3rd edn. Elsevier, Amsterdam, pp 225–249. https://doi.org/10.1016/B978-0-12-408078-2.00010-X

    Chapter  Google Scholar 

  112. Sagitha P, Reshmi CR, Sundaran SP, Binoy A, Mishra N, Sujith A (2019) In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane. Int J Biol Macromol 126:717–730. https://doi.org/10.1016/j.ijbiomac.2018.12.155

    Article  CAS  Google Scholar 

  113. Yang G, Lin Q, Wang C, Li J, Wang J, Zhou J et al (2012) Synthesis and characterization of dextran-capped silver nanoparticles with enhanced antibacterial activity. J Nanosci Nanotechnol 12:3766–3774. https://doi.org/10.1166/jnn.2012.5865

    Article  CAS  PubMed  Google Scholar 

  114. Hoque J, Haldar J (2017) Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. ACS Appl Mater Interfaces 9:15975–15985. https://doi.org/10.1021/acsami.7b03208

    Article  CAS  PubMed  Google Scholar 

  115. De Cicco F, Reverchon E, Adami R, Auriemma G, Russo P, Calabrese EC et al (2014) In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying. Carbohydr Polym 101:1216–1224. https://doi.org/10.1016/j.carbpol.2013.10.067

    Article  CAS  PubMed  Google Scholar 

  116. Ritz U, Kögler P, Höfer I, Frank P, Klees S, Gebhard S et al (2016) Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan-amylose blends with cytokines for a human co-culture model of human osteoblasts and endothelial cells. J Mater Chem B 4:6552–6564. https://doi.org/10.1039/c6tb00654j

    Article  CAS  Google Scholar 

  117. Liao N, Unnithan AR, Joshi MK, Tiwari AP, Hong ST, Park CH et al (2015) Electrospun bioactive poly (e{open}-caprolactone)-cellulose acetate-dextran antibacterial composite mats for wound dressing applications. Colloids Surfaces A Physicochem Eng Asp 469:194–201. https://doi.org/10.1016/j.colsurfa.2015.01.022

    Article  CAS  Google Scholar 

  118. Tiyaboonchai W, Rodleang I, Ounaroon A (2015) Mucoadhesive polyethylenimine-dextran sulfate nanoparticles containing Punica granatum peel extract as a novel sustained-release antimicrobial. Pharm Dev Technol 20:426–432. https://doi.org/10.3109/10837450.2013.879884

    Article  CAS  PubMed  Google Scholar 

  119. Bankura KP, Maity D, Mollick MR, Mondal D, Bhowmick B, Bain MK et al (2012) Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym 1110:156–161. https://doi.org/10.1016/j.carbpol.2012.03.089

    Article  CAS  Google Scholar 

  120. Unnithan AR, Barakat NM, Tirupathi Pichiah PB, Gnanasekaran G, Nirmala R, Cha YS et al (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90:1786–1793. https://doi.org/10.1016/j.carbpol.2012.07.071

    Article  CAS  PubMed  Google Scholar 

  121. Cano AI, Cháfer M, Chiralt A, González-Martínez C (2015) Physical and microstructural properties of biodegradable films based on pea starch and PVA. J Food Eng 167:59–64. https://doi.org/10.1016/j.jfoodeng.2015.06.003

    Article  CAS  Google Scholar 

  122. Kaith BS, Sharma R, Kalia S (2015) Guar gum based biodegradable, antibacterial and electrically conductive hydrogels. Int J Biol Macromol 75:266–275. https://doi.org/10.1016/j.ijbiomac.2015.01.046

    Article  CAS  PubMed  Google Scholar 

  123. Sharma R, Kaith BS, Kalia S, Pathania D, Kumar A, Sharma N et al (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manage 162:37–45. https://doi.org/10.1016/j.jenvman.2015.07.044

    Article  CAS  PubMed  Google Scholar 

  124. Auddy RG, Abdullah MF, Das S, Roy P, Datta S, Mukherjee A (2013) New guar biopolymer silver nanocomposites for wound healing applications. Biomed Res Int 2013:912458. https://doi.org/10.1155/2013/912458

    Article  Google Scholar 

  125. Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med (Praha) 53:397–411. https://doi.org/10.17221/1930-VETMED

    Article  CAS  Google Scholar 

  126. Lequeux I, Ducasse E, Jouenne T, Thebault P (2014) Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur Polym J 51:182–190. https://doi.org/10.1016/j.eurpolymj.2013.11.012

    Article  CAS  Google Scholar 

  127. Saranraj P, Naidu MA (2013) Hyaluronic acid production and its applications—a review. Int J Pharm Biol Arch 4:853–859. ISSN 0976-3333

    Google Scholar 

  128. Suzuki K, Anada T, Miyazaki T, Miyatake N, Honda Y, Kishimoto KN et al (2014) Effect of addition of hyaluronic acids on the osteoconductivity and biodegradability of synthetic octacalcium phosphate. Acta Biomater 10:531–543. https://doi.org/10.1016/j.actbio.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  129. Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 33:349–351. https://doi.org/10.1007/BF02409454

    Article  CAS  PubMed  Google Scholar 

  130. Pérez-Álvarez L, Ruiz-Rubio L, Azua I, Benito V, Bilbao A, Vilas-Vilela JL (2019) Development of multiactive antibacterial multilayers of hyaluronic acid and chitosan onto poly(ethylene terephthalate). Eur Polym J 112:31–37. https://doi.org/10.1016/j.eurpolymj.2018.12.038

    Article  CAS  Google Scholar 

  131. Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E et al (2011) Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med 22:2329–2338. https://doi.org/10.1007/s10856-011-4408-2

    Article  CAS  PubMed  Google Scholar 

  132. Gaetano G, Giuseppe P, Salvatore PF, Susanna M, Sara S, Luca RC (2018) Hyaluronic-based antibacterial hydrogel coating for implantable biomaterials in orthopedics and trauma: from basic research to clinical applications. In: Haider AH (ed) Hydrogels, 1st edn. IntechOpen, London, pp 179–200. https://doi.org/10.5772/intechopen.73203

    Chapter  Google Scholar 

  133. Petrauskaite O, Gomes PS, Fernandes MH, Juodzbalys G, Stumbras A, Maminskas J et al (2013) Biomimetic mineralization on a macroporous cellulose-based matrix for bone regeneration. Biomed Res Int 2013:1–9. https://doi.org/10.1155/2013/452750

    Article  CAS  Google Scholar 

  134. Cheng H, Yang X, Che X, Yang M, Zhai G (2018) Biomedical application and controlled drug release of electrospun fibrous materials. Mater Sci Eng C 90:750–763. https://doi.org/10.1016/j.msec.2018.05.007

    Article  CAS  Google Scholar 

  135. Khattak S, Wahid F, Liu LP, Jia SR, Chu LQ, Xie YY et al (2019) Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 103:1989–2006. https://doi.org/10.1007/s00253-018-09602-0

    Article  CAS  PubMed  Google Scholar 

  136. Konwarh R, Karak N, Misra M (2013) Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 31:421–437. https://doi.org/10.1016/j.biotechadv.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  137. Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902. https://doi.org/10.1021/am3007609

    Article  CAS  PubMed  Google Scholar 

  138. Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467. https://doi.org/10.1016/j.carbpol.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  139. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B et al (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym 198:131–141. https://doi.org/10.1016/j.carbpol.2018.06.072

    Article  CAS  PubMed  Google Scholar 

  140. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym 102:884–892. https://doi.org/10.1016/j.carbpol.2013.10.070

    Article  CAS  PubMed  Google Scholar 

  141. Liu S, Chu M, Zhu Y, Li L, Wang L, Gao H et al (2017) A novel antibacterial cellulose based biomaterial for hernia mesh applications. RSC Adv 7:11601–11607. https://doi.org/10.1039/c6ra26216c

    Article  CAS  Google Scholar 

  142. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA (2013) Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles. Molecules 18:6269–6280. https://doi.org/10.3390/molecules18066269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baker S, Volova T, Prudnikova SV, Shumilova AA, Perianova OV, Zharkov SM et al (2018) Bio-hybridization of nanobactericides with cellulose films for effective treatment against members of ESKAPE multi-drug-resistant pathogens. Appl Nanosci 8:1101–1110. https://doi.org/10.1007/s13204-018-0717-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pawar, V., Bavya, M.C., Rohan, K.V., Srivastava, R. (2020). Advances in Polysaccharide-Based Antimicrobial Delivery Vehicles. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_12

Download citation

Publish with us

Policies and ethics