Skip to main content

Comparing High Performance Computing Accelerator Programming Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11887))

Abstract

Accelerator devices are becoming a norm in High Performance Computing (HPC). With more systems opting for heterogeneous architectures, portable programming models like OpenMP and OpenACC are becoming increasingly important. The SPEC ACCEL 1.2 benchmark suite consists of comparable benchmarks in OpenCL, OpenMP 4.5, and OpenACC 2.5 that can be used to evaluate the performance and support for programming models and frameworks on heterogeneous platforms. In this paper we go beneath the normative metric of performance times and look at the individual kernels to study the usage, strengths, and weaknesses of the two prevalent portable heterogeneous programming models, OpenMP and OpenACC. From our analysis we identify that benchmarks like MRI-Q, SP and BT have better performance using OpenACC, while benchmarks like MiniGhost, LBM and LBDC do consistently better with the OpenMP programming model across super-computers like Titan, and Summit. We deep dive into the kernels of select four benchmarks to answer questions like: Where does the benchmark spend most of its cycles? What is the parallelization strategy used? Why is one programming model more performant than the other? By identifying the similarities and differences we want to contrast between the benchmark implementation strategies in the SPEC ACCEL 1.2 benchmarks and provide more insights into the OpenMP and OpenACC programming models.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Percival quickstart guide. https://www.olcf.ornl.gov/percival-quickstart-guide/

  2. Summit: Scale new heights. Discover new solutions. https://www.olcf.ornl.gov/summit/

  3. Boehm, S., Pophale, S., Vergara Larrea, V.G., Hernandez, O.: Evaluating performance portability of accelerator programming models using SPEC ACCEL 1.2 benchmarks. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) ISC High Performance 2018. LNCS, vol. 11203, pp. 711–723. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02465-9_51

    Chapter  Google Scholar 

  4. Juckeland, G., Grund, A., Nagel, W.E.: Performance portable applications for hardware accelerators: lessons learned from SPEC ACCEL. In: 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, pp. 689–698, May 2015. https://doi.org/10.1109/IPDPSW.2015.26

  5. Juckeland, G., et al.: From describing to prescribing parallelism: translating the SPEC ACCEL OpenACC suite to OpenMP target directives. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 470–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6_33

    Chapter  Google Scholar 

  6. NVIDIA: NVIDIA Visual Profiler. https://developer.nvidia.com/nvidia-visual-profiler

  7. Oak Ridge National Lab: Titan supercomputer. https://www.olcf.ornl.gov/titan/

  8. Top 500: Top 500: June 2018. https://www.top500.org/lists/2018/06/

  9. Wienke, S., Terboven, C., Beyer, J.C., Müller, M.S.: A pattern-based comparison of OpenACC and OpenMP for accelerator computing. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 812–823. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09873-9_68

    Chapter  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract number DE-AC05-00OR22725. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We would like to thank Dr. Oscar Hernandez from ORNL for his guidance and support during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaroop Pophale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pophale, S., Boehm, S., Vergara Larrea, V.G. (2019). Comparing High Performance Computing Accelerator Programming Models. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds) High Performance Computing. ISC High Performance 2019. Lecture Notes in Computer Science(), vol 11887. Springer, Cham. https://doi.org/10.1007/978-3-030-34356-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34356-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34355-2

  • Online ISBN: 978-3-030-34356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics