Skip to main content

Adaptive Assembly Approach for E-Axles

  • Conference paper
  • First Online:
4th EAI International Conference on Management of Manufacturing Systems

Abstract

Achieving high quality, high variety batch size production can be quite expensive. In this vision article, the methodology of achieving this at low costs and the available technologies in the field of e-mobility production are described. The focus of this research lies in high adaptive and cognitive aspects in the assembly along with qualitative aspects. To match the high flexibility of a Flexible Manufacturing System (FMS) while considering quantitative efforts, a use case of an e-axle assembly is being done. E-axle is chosen due to the ongoing electrification of mobility. Hence, a solution for implementing a set of methodologies for an adaptive manufacturing system with respect to assembly, quality and implementation efforts is shown. A LoPA (Level of Practical Application) matrix is presented of all the possible adaptive technologies that are feasible to implement in the e-assembly line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko, J., Hu, S. J., & Huang, T. (2005). Reusability assessment for manufacturing systems. CIRP Annals. – Manufacturing Technology. https://doi.org/10.1016/S0007-8506(07)60062-6.

    Article  Google Scholar 

  2. Abou-El-Hossein, K. A., Theron, N. J., & Ghobashy, S. (2015). Design of machine tool based on reconfigurability principles. Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/amm.789-790.213.

    Article  Google Scholar 

  3. Mehrabi, M. G., Ulsoy, A. G., Koren, Y., & Heytler, P. (2002). Trends and perspectives in flexible and reconfigurable manufacturing systems. Journal of Intelligent Manufacturing. https://doi.org/10.1023/A:1014536330551.

    Article  Google Scholar 

  4. Sugiarto, I., Axenie, C., & Conradt, J. (2016). From adaptive reasoning to cognitive factory: Bringing cognitive intelligence to manufacturing technology. International Journal of Industrial Research and Applied Engineering. https://doi.org/10.9744/jirae.1.1.1-10.

  5. Marcel Schwartz, M. S., Dipl.-W irt.-Ing., Dominik Kolz, M. S., & Katharina Heeg, M. A. (2016). Dienstleistungsinnovationen für Elektromobilität – Förderung von Innovation und Nutzerorientierung. Amsterdam.

    Google Scholar 

  6. Electric Car (Market) Data. https://evobsession.com/electric-car-sales/.

  7. Wiendahl, H. P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H. H., Duffie, N., & Brieke, M. (2007). Changeable manufacturing – Classification, design and operation. CIRP Annals. – Manufacturing Technology. https://doi.org/10.1016/j.cirp.2007.10.003.

    Article  Google Scholar 

  8. Fasth-Berglund, Ã…., & Stahre, J. (2013). Cognitive automation strategy for reconfigurable and sustainable assembly systems. Assembly Automation. https://doi.org/10.1108/AA-12-2013-036.

    Article  Google Scholar 

  9. Dencker, K., Fasth, Å., Stahre, J., Mårtensson, L., Lundholm, T., & Akillioglu, H. (2009). Designing proactive assembly systems (ProAct) – Criteria and interaction between automation, information, and competence. Annual Reviews in Control, 33(2), 230–237.

    Article  Google Scholar 

  10. Lotter, B., & Wiendahl, H.-P. (2008). Changeable and reconfigurable assembly systems. In Changeable and reconfigurable manufacturing systems. London: Springer.

    Google Scholar 

  11. Meichsner, T. P. (2009). Migration manufacturing – A new concept for automotive body production. In Changeable and reconfigurable manufacturing systems. London: Springer.

    Google Scholar 

  12. Bussmann, S., & Sieverding, J. (2001, October). Holonic control of an engine assembly plant: An industrial evaluation. In 2001 IEEE international conference on systems, man and cybernetics. E- systems and e-man for cybernetics in cyberspace (cat. No. 01CH37236) (Vol. 1, pp. 169--174). IEEE.

    Google Scholar 

  13. Gräßler, I., & Pöhler, A. (2017). Implementation of an adapted holonic production architecture. Procedia CIRP, 63, 138–143.

    Article  Google Scholar 

  14. Bi, Z. M., Lang, S. Y. T., Shen, W., & Wang, L. (2008). Reconfigurable manufacturing systems: The state of the art. International Journal of Production Research. https://doi.org/10.1080/00207540600905646.

    Article  Google Scholar 

  15. Koren, Y., & Shpitalni, M. (2010). Design of reconfigurable manufacturing systems. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2011.01.001.

    Article  Google Scholar 

  16. Katz, R. (2007). Design principles of reconfigurable machines. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-006-0615-2.

    Article  Google Scholar 

  17. Abele, E., Liebeck, T., & Wörn, A. (2006). Measuring flexibility in investment decisions for manufacturing systems. CIRP Annals. – Manufacturing Technology. https://doi.org/10.1016/S0007-8506(07)60452-1.

    Article  Google Scholar 

  18. Koren, Y., Gu, X., & Guo, W. (2018). Reconfigurable manufacturing systems: Principles, design, and future trends. Frontiers of Mechanical Engineering, 13(2), 121–136.

    Article  Google Scholar 

  19. Gorecky, D., Worgan, S. F., & Meixner, G. (2011). COGNITO: A cognitive assistance and training system for manual tasks in industry. In Proceedings of the 29th annual European conference on cognitive ergonomics.

    Google Scholar 

  20. ElMaraghy, H. A. (2008). Changeable and reconfigurable manufacturing systems. New York: Springer.

    Google Scholar 

  21. Wallhoff, F., AblaBmeier, M., Bannat, A., Buchta, S., Rauschert, A., Rigoll, G., & Wiesbeck, M. (2007, July). Adaptive human-machine interfaces in cognitive production environments. In 2007 IEEE international conference on multimedia and expo (pp. 2246--2249). IEEE.

    Google Scholar 

  22. Funk, M., & Schmidt, A. (2015). Cognitive assistance in the workplace. IEEE Pervasive Computing. https://doi.org/10.1109/MPRV.2015.53.

    Article  Google Scholar 

  23. Böckenkamp, A., Mertens, C., Prasse, C., Stenzel, J., & Weichert, F. (2017). A versatile and scalable production planning and control system for small batch series (In industrial internet of things (pp. 541–559)). Cham: Springer.

    Book  Google Scholar 

  24. Pascu, C. I., & Paraschiv, D. (2016). Study about improving the quality process performance for a steel structures components assembly using FMEA method. Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/amm.822.429.

    Article  Google Scholar 

  25. Betterton, C. E., & Silver, S. J. (2012). Detecting bottlenecks in serial production lines – A focus on interdeparture time variance. International Journal of Production Research. https://doi.org/10.1080/00207543.2011.596847.

    Article  Google Scholar 

  26. Law, A. M. (2009). How to build valid and credible simulation models. In Proceedings – Winter Simulation Conference.

    Google Scholar 

  27. Kikolski, M. (2016). Identification of production bottlenecks with the use of Plant Simulation software. Engineering Management in Production and Services. https://doi.org/10.1515/emj-2016-0038.

    Article  Google Scholar 

  28. Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-018-1617-6.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from Pro2Future GmbH. Pro2Future is funded as part of the Austrian COMET Program – Competence Centers for Excellent Technologies – under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology, the Austrian Federal Ministry for Digital and Economic Affairs, and the Provinces of Upper Austria and Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muaaz Abdul Hadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdul Hadi, M., Brillinger, M., Haas, F. (2020). Adaptive Assembly Approach for E-Axles. In: Knapcikova, L., Balog, M., Perakovic, D., Perisa, M. (eds) 4th EAI International Conference on Management of Manufacturing Systems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-34272-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34272-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34271-5

  • Online ISBN: 978-3-030-34272-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics