Skip to main content

Binary Compact Star Mergers and the Phase Diagram of Quantum Chromodynamics

  • Chapter
  • First Online:
Discoveries at the Frontiers of Science

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

  • 397 Accesses

Abstract

This article is dedicated to one of my doctor fathers, Prof. Dr. Dr. h.c. mult. Walter Greiner, whom I first met during my undergraduate studies at the Goethe University Frankfurt in 1990. During this time Walter Greiner gave his legendary 5-semester course on theoretical physics and I had the fortune to be able to attend his first lecture on Mechanic I. Greiner’s fashion and manner of presenting the philosophical and mathematical backgrounds of theoretical physics in a detailed way was outstanding. I also enjoyed his interposed personal stories on topics like e.g. scientific conferences and the wilderness of Africa’s nature. Between 1998 and 2004 I worked as a doctoral student in his large international group in the Institute of Theoretical Physics (Campus Bockenheim). The present article summarizes some of the scientific results I have obtained during this period under his supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that during the time of achieving these results the current observational constraint on the observed maximum mass in neutron stars, i.e., \(2.01\pm 0.04M_\odot \) [38] were not known.

  2. 2.

    During the time of my diploma-studies at the University Konstanz I was not aware that W. Greiner and H. Dehnen had been dear friends since the days of joint graduate time at the Freiburg University 60 years ago.

  3. 3.

    It needed almost 15 years that these estimates were confirmed by the numerical simulations of Bauswein et al. [48].

  4. 4.

    In a corotating frame the Diskofox looks more like a West Cost Swing dance and the merger snapshot can be regarded as the first “sugar push” of the West Cost Swing couple.

  5. 5.

    However, the color of this frozen picture will be infinitely red-shifted quite rapidly.

References

  1. J. Baez, J.P. Muniain, Gauge Fields, Knots and Gravity, vol. 4 (World Scientific Publishing Company, 1994)

    Google Scholar 

  2. F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester, Rev. Mod. Phys. 48(3), 393–416 (1976), https://link.aps.org/doi/10.1103/RevModPhys.48.393

  3. F.W. Hehl, Gauge theory of gravity and spacetime, in Towards a Theory of Spacetime Theories (Springer, 2017), pp. 145–169

    Google Scholar 

  4. H. Dehnen, E. Hitzer, Int. J. Theor. Phys. 33, 575–592 (1994)

    Article  Google Scholar 

  5. A. Geitner, M. Hanauske, E. Hitzer (1998), arXiv:gr-qc/9801048

  6. P.O. Hess, T. Boller, Walter Greiner Memorial Volume, vol. 199 (2018)

    Google Scholar 

  7. J. Struckmeier, J. Muench, D. Vasak, J. Kirsch, M. Hanauske, H. Stoecker, Phys. Rev. D 95, 124048 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Struckmeier, P. Liebrich, J. Muench, M. Hanauske, J. Kirsch, D. Vasak, L. Satarov, H. Stoecker (2017), arXiv:1711.10333

  9. Y. Mizuno, Z. Younsi, C.M. Fromm, O. Porth, M. De Laurentis, H. Olivares, H. Falcke, M. Kramer, L. Rezzolla, Nat. Astron. 1 (2018)

    Google Scholar 

  10. T. Boller, P.O. Hess, Walter Greiner Memorial Volume, vol. 209 (2018)

    Google Scholar 

  11. W. Zhu, I. Stairs, P. Demorest, D.J. Nice, J. Ellis, S. Ransom, Z. Arzoumanian, K. Crowter, T. Dolch, R. Ferdman et al., Astrophys. J. 809, 41 (2015)

    Article  ADS  Google Scholar 

  12. P. Papazoglou, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 57, 2576 (1998)

    Article  ADS  Google Scholar 

  13. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 59, 411 (1999)

    Article  ADS  Google Scholar 

  14. M. Hanauske, Properties of Compact Stars Within QCD-Motivated Models. Ph.D. thesis J.W. Goethe-University Frankfurt, Germany (2004)

    Google Scholar 

  15. S. Pal, M. Hanauske, I. Zakout, H. Stöcker, W. Greiner, Phys. Rev. C 60, 015802 (1999)

    Article  ADS  Google Scholar 

  16. M. Hanauske, D. Zschiesche, S. Pal, S. Schramm, H. Stöcker, W. Greiner, Astrophys. J. 537, 958–963 (2000)

    Article  ADS  Google Scholar 

  17. M. Hanauske, W. Greiner, Gen. Relativ. Gravit. 33, 739–755 (2001)

    Article  ADS  Google Scholar 

  18. M. Hanauske, L.M. Satarov, I.N. Mishustin, H. Stöcker, W. Greiner, Phys. Rev. D 64, 043005 (2001)

    Article  ADS  Google Scholar 

  19. J. Schaffner-Bielich, M. Hanauske, H. Stöcker, W. Greiner, Phys. Rev. Lett. 89, 171101 (2002)

    Article  ADS  Google Scholar 

  20. I.N. Mishustin, M. Hanauske, A. Bhattacharyya, L.M. Satarov, H. Stöcker, W. Greiner, Phys. Lett. B 552 1–8 (2003), arXiv:hep-ph/0210422

  21. M. Hanauske, D. Zschiesche, U. Eichmann, L.M. Satarov, I.N. Mishustin, J. Schaffner-Bielich, H. Stoecker, W. Greiner, Theory of compact stars, in XEUS—Studying the Evolution of the Hot Universe, held at MPE Garching, ed. by G. Hasinger, Th. Boller, A.N. Parmer. MPE Report 281 (2003), p. 277, 11–13 Mar 2002

    Google Scholar 

  22. I. Shovkovy, M. Hanauske, M. Huang, Phys. Rev. D 67, 103004 (2003)

    Article  ADS  Google Scholar 

  23. S. Banik, M. Hanauske, D. Bandyopadhyay, W. Greiner, Phys. Rev. D 70, 123004 (2004)

    Article  ADS  Google Scholar 

  24. A. Bhattacharyya, S.K. Ghosh, M. Hanauske, S. Raha, Phys. Rev. C 71, 048801 (2005)

    Article  ADS  Google Scholar 

  25. S. Banik, M. Hanauske, D. Bandyopadhyay, J. Phys. G Nucl. Phys. 31, S841–S848 (2005)

    Article  ADS  Google Scholar 

  26. M. Hanauske, K. Takami, L. Bovard, L. Rezzolla, J.A. Font, F. Galeazzi, H. Stöcker, Phys. Rev. D 96 043004 (2017), arXiv:1611.07152

  27. M. Hanauske, J. Steinheimer, L. Bovard, A. Mukherjee, S. Schramm, K. Takami, J. Papenfort, N. Wechselberger, L. Rezzolla, H. Stöcker, Concluding remarks: connecting relativistic heavy ion collisions and neutron star mergers by the equation of state of dense Hadron- and Quark matter as signalled by gravitational waves. J. Phys. Conf. Ser. 878(1) (article id. 012031) (2017)

    Google Scholar 

  28. M. Hanauske, Z.S. Yilmaz, C. Mitropoulos, L. Rezzolla, H. Stöcker, Gravitational waves from binary compact star mergers in the context of strange matter, in 17th International Conference on Strangeness in Quark Matter (SQM 2017), Utrecht, The Netherlands. EPJ Web of Conferences, ed. by A. Mischke, P. Kuijer, id. 20004 (2018), p. 20004

    Google Scholar 

  29. M.G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, K. Schwenzer, Phys. Rev. Lett. 120, 041101 (2018)

    Article  ADS  Google Scholar 

  30. M. Hanauske, L. Bovard, J. Astrophys. Astron. 39, 45 (2018)

    Article  ADS  Google Scholar 

  31. M. Hanauske, L. Bovard, E. Most, J. Papenfort, J. Steinheimer, A. Motornenko, V. Vovchenko, V. Dexheimer, S. Schramm, H. Stöcker, Universe 5 (2019). ISSN 2218-1997, https://www.mdpi.com/2218-1997/5/6/156

  32. M. Hanauske, J. Steinheimer, A. Motornenko, V. Vovchenko, L. Bovard, E.R. Most, L.J. Papenfort, S. Schramm, H. Stöcker, Particles 2, 44–56 (2019). ISSN 2571-712X, https://www.mdpi.com/2571-712X/2/1/4

  33. M. Hanauske, L. Bovard, J. Steinheimer, A. Motornenko, V. Vovchenko, S. Schramm, V. Dexheimer, J. Papenfort, E.R. Most, H. Stöcker, J. Phys. Conf. Ser. 1271, 012023 (2019)

    Article  Google Scholar 

  34. J. Walecka, Oxf. Stud. Nucl. Phys. 16, 1–610 (1995)

    Google Scholar 

  35. Y. Nambu et al., Phys. Rev. 122, 345 (1961)

    ADS  Google Scholar 

  36. I.N. Mishustin, L.M. Satarov, H. Stöcker, W. Greiner, Phys. Rev. C 59, 3343 (1999)

    Article  ADS  Google Scholar 

  37. I.N. Mishustin, L.M. Satarov, H. Stöcker, W. Greiner, Phys. Rev. C 62, 034901 (2000)

    Article  ADS  Google Scholar 

  38. J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe, J.W.T. Hessels, V.M. Kaspi, V.I. Kondratiev, N. Langer, T.R. Marsh, M.A. McLaughlin, T.T. Pennucci, S.M. Ransom, I.H. Stairs, J. van Leeuwen, J.P.W Verbiest, D.G. Whelan, Science 340, 448 (2013), arXiv:1304.6875

  39. M. Hanauske, J. Steinheimer, L. Bovard, A. Mukherjee, S. Schramm, K. Takami, J. Papenfort, N. Wechselberger, L. Rezzolla, H. Stöcker, Concluding remarks: connecting relativistic heavy ion collisions and neutron star mergers by the equation of state of dense hadron-and quark matter as signalled by gravitational waves. J. Phys. Conf. Ser. 878, 012031 (2017) (IOP Publishing)

    Google Scholar 

  40. N. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity. Astronomy and Astrophysics Library (Springer, New York, 2000). ISBN 9780387989778, https://books.google.de/books?id=BBSOgxe2S1AC

  41. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (IoP, Bristol, 1999)

    Google Scholar 

  42. T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Müller, M. Schäfer, W. Greiner, Experimental Tests of Pseudo-Complex General Relativity (2016), p. 111

    Google Scholar 

  43. L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, Oxford, UK, 2013). ISBN 9780198528906

    Google Scholar 

  44. J.M. Bardeen, K.S. Thorne, D.W. Meltzer, Astrophys. J. 145, 505 (1966)

    Article  ADS  Google Scholar 

  45. N.K. Glendenning, C. Kettner, Astron. Astrophys. 353, L9 (2000), arXiv:astro-ph/9807155

  46. The LIGO Scientific Collaboration and the Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837

  47. M. Hanauske, GSI Annual Report, vol. 96 (2003)

    Google Scholar 

  48. A. Bauswein, N.U.F. Bastian, D.B. Blaschke, K. Chatziioannou, J.A. Clark, T. Fischer, M. Oertel (2018), arXiv:1809.01116

  49. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119(16), 161101 (2017), https://link.aps.org/doi/10.1103/PhysRevLett.119.161101

  50. LIGO Scientific Collaboration, Virgo Collaboration, Gamma-Ray Burst Monitor F and INTEGRAL, Astrophys. J. Lett. 848, L13 (2017), arXiv:1710.05834, http://stacks.iop.org/2041-8205/848/i=2/a=L13

  51. The LIGO Scientific Collaboration, the Virgo Collaboration, B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. Lett. 848, L12 (2017), http://stacks.iop.org/2041-8205/848/i=2/a=L12

  52. The LIGO Scientific Collaboration, the Virgo Collaboration, B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso et al. (2017), arXiv:1710.09320

  53. L. Bovard, D. Martin, F. Guercilena, A. Arcones, L. Rezzolla, O. Korobkin, Phys. Rev. D 96, 124005 (2017), arXiv:1709.09630

  54. The Einstein Toolkit Consortium, http://seinsteintoolkit.org

  55. T. Nakamura, K. Oohara, Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1–218 (1987)

    Article  ADS  Google Scholar 

  56. M. Shibata, T. Nakamura, Phys. Rev. D 52, 5428–5444 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  57. T.W. Baumgarte, S.L. Shapiro, Phys. Rev. D 59, 024007 (1999), arXiv:gr-qc/9810065

  58. M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D. Pollney, E. Seidel, R. Takahashi, Phys. Rev. D 67, 084023 (2003), arXiv:gr-qc/0206072

  59. D. Pollney, C. Reisswig, L. Rezzolla, B. Szilágyi, M. Ansorg, B. Deris, P. Diener, E.N. Dorband, M. Koppitz, A. Nagar, E. Schnetter, Phys. Rev. D 76, 124002 (2007), arXiv:0707.2559

  60. J.A. Font, Living Rev. Relativ. 6, 4 (2008), arXiv:0704.2608, http://www.livingreviews.org/lrr-2008-7

  61. D. Radice, L. Rezzolla, F. Galeazzi, Mon. Not. R. Astron. Soc. L 437, L46–L50 (2014). arXiv:1306.6052

  62. D. Radice, L. Rezzolla, F. Galeazzi, Class. Quantum Gravity 31, 075012 (2014), arXiv:1312.5004

  63. E. Schnetter, S.H. Hawley, I. Hawke, Class. Quantum Gravity 21, 1465–1488 (2004), arXiv:gr-qc/0310042

  64. J.M. Lattimer, F.D. Swesty, Nucl. Phys. A 535, 331–376 (1991)

    Article  ADS  Google Scholar 

  65. L. Bovard, L. Rezzolla, Class. Quantum Gravity 34, 215005 (2017), arXiv:1705.07882, http://stacks.iop.org/0264-9381/34/i=21/a=215005

  66. A. Lyne, M. Burgay, M. Kramer, A. Possenti, R. Manchester, F. Camilo, M. McLaughlin, D. Lorimer, N. D’Amico, B. Joshi et al., Science 303, 1153–1157 (2004)

    Article  ADS  Google Scholar 

  67. M. Kramer, I. Stairs, Annu. Rev. Astron. Astrophys. 46, 541–572 (2008)

    Article  ADS  Google Scholar 

  68. M. Burgay, M. Kramer, M. McLaughlin, Bull. Astron. Soc. India 42, 101–119 (2014)

    ADS  Google Scholar 

  69. E.R. Most, L.J. Papenfort, V. Dexheimer, M. Hanauske, S. Schramm, H. Stöcker, L. Rezzolla (2018), arXiv:1807.03684

  70. M. Hanauske, Phys. World 18, 64 (2005)

    Article  Google Scholar 

  71. M. Hanauske, Evolutionäre Quanten-Spieltheorie im Kontext sozio-ökonomischer Systeme. Ph.D. thesis J.W. Goethe-University Frankfurt, Germany (2011)

    Google Scholar 

Download references

Acknowledgements

We thank L. Bovard, J. Steinheimer, A. Motornenko, E. Most, J. Papenfort, S. Schramm, E. Bratkovskaya and L. Rezzolla for their scientific contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hanauske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanauske, M., Stöcker, H. (2020). Binary Compact Star Mergers and the Phase Diagram of Quantum Chromodynamics. In: Kirsch, J., Schramm, S., Steinheimer-Froschauer, J., Stöcker, H. (eds) Discoveries at the Frontiers of Science. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-030-34234-0_10

Download citation

Publish with us

Policies and ethics