Skip to main content

Learning Relational Fractals for Deep Knowledge Graph Embedding in Online Social Networks

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2019 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11881))

Included in the following conference series:

Abstract

Knowledge Graphs (KGs) have deep and impactful applications in a wide-array of information networks such as natural language processing, recommendation systems, predictive analysis, recognition, classification, etc. Embedding real-life relational representations in KGs is an essential process of abstracting facts for many important data mining tasks like information retrieval, privacy and control, enrichment and so on. In this paper, we investigate the embedding of the relational fractals which are learned from the Relational Turbulence profiles in the transactions of Online Social Networks (OSNs) into KGs. These relational fractals have the capability of building both compositional-depth hierarchies and shallow-wide continuous vector spaces for more efficient computations on devices with limited resources. The results from our RFT model show accurate predictions of relational turbulence patterns in OSNs which can be used to evolve facts in KGs for more accurate and timely information representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  2. Cai, L., Wang, W.Y.: Kbgan: Adversarial learning for knowledge graph embeddings. arXiv preprint arXiv:1711.04071 (2017)

  3. Deng, L., Yu, D., et al.: Deep learning: methods and applications. Found. Trends Signal Process. 7(3–4), 197–387 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gideon, J., Khorram, S., Aldeneh, Z., Dimitriadis, D., Provost, E.M.: Progressive neural networks for transfer learning in emotion recognition. arXiv preprint arXiv:1706.03256 (2017)

  5. Goh, K.I., Salvi, G., Kahng, B., Kim, D.: Skeleton and fractal scaling in complex networks. Phys. Rev. Lett. 96(1), 018701 (2006)

    Article  Google Scholar 

  6. Haunani Solomon, D., Theiss, J.: A longitudinal test of the relational turbulence model of romantic relationship development. Pers. Relat. 15, 339–357 (2008). https://doi.org/10.1111/j.1475-6811.2008.00202.x

    Article  Google Scholar 

  7. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  8. Keshmiri, S., Sumioka, H., Nakanishi, J., Ishiguro, H.: Emotional state estimation using a modified gradient-based neural architecture with weighted estimates. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4371–4378. IEEE (2017)

    Google Scholar 

  9. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  10. Li, X., Lou, C., Zhao, J., Wei, H., Zhao, H.: “tom” pet robot applied to urban autism. arXiv preprint arXiv:1905.05652 (2019)

  11. Liu, S., Trenkler, G.: Hadamard, khatri-rao, kronecker and other matrix products. Int. J. Inform. Syst. Sci. 4(1), 160–177 (2008)

    MathSciNet  MATH  Google Scholar 

  12. McLaren, R.M., Solomon, D.H., Priem, J.S.: The effect of relationship characteristics and relational communication on experiences of hurt from romantic partners. J. Commun. 62(6), 950–971 (2012)

    Article  Google Scholar 

  13. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)

    Article  Google Scholar 

  14. Ramanathan, V., Yao, B., Fei-Fei, L.: Social role discovery in human events. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2475–2482 (2013)

    Google Scholar 

  15. Solomon, D.H., Knobloch, L.K.: Relationship uncertainty, partner interference, and intimacy within dating relationships. J. Soc. Pers. Relat. 18(6), 804–820 (2001). https://doi.org/10.1177/0265407501186004

    Article  Google Scholar 

  16. Solomon, D.H., Knobloch, L.K., Theiss, J.A., McLaren, R.M.: Relational turbulence theory: explaining variation in subjective experiences and communication within romantic relationships. Hum. Commun. Res. 42(4), 507–532 (2016)

    Article  Google Scholar 

  17. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3462–3471. JMLR. org (2017)

    Google Scholar 

  18. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  19. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  20. Wilmot, W., et al.: Interpersonal Conflict, 9th edn. McGraw-Hill Higher Education, New York (2007)

    Google Scholar 

  21. Zhang, J., Tan, L., Tao, X.: On relational learning and discovery in social networks: a survey. Int. J. Mach. Learn. Cybern. 20(8), 1–18 (2018). https://doi.org/10.1007/s13042-018-0823-8

    Article  Google Scholar 

  22. Zhang, J., et al.: Detecting relational states in online social networks. In: 2018 5th International Conference on Behavioral, Economic, and Socio-Cultural Computing (BESC), pp. 38–43. IEEE (2018)

    Google Scholar 

  23. Zhang, J., Tan, L., Tao, X., Zheng, X., Luo, Y., Lin, J.C.-W.: SLIND: identifying stable links in online social networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10828, pp. 813–816. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91458-9_54

    Chapter  Google Scholar 

  24. Zhang, J., Tao, X., Tan, L., Lin, J.C.-W., Li, H., Chang, L.: On link stability detection for online social networks. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11029, pp. 320–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98809-2_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Tan, L., Tao, X., Wang, D., Ying, J.JC., Wang, X. (2019). Learning Relational Fractals for Deep Knowledge Graph Embedding in Online Social Networks. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34223-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34222-7

  • Online ISBN: 978-3-030-34223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics