Skip to main content

Quantifying Effects of Urban Heat Islands: State of the Art

  • Conference paper
  • First Online:

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

Abstract

Recently, the world has been suffering from the distressing effects of one form of climate change, urban heat island (UHI). It means that urban and suburban areas’ air and surface temperatures are hotter than their nearby surrounding rural areas. Pavements and parking lots contributes to about 29% to 45% of the urban areas, and they contribute to the UHI phenomena. During the day, temperature of dark dry surfaces (such as pavements and parking lots) in direct sun can reach up to 88 °C while vegetated surfaces with moist soils might reach only 18 °C under the same conditions. The increase in temperature due to UHI leads to an increase in the peak energy demand using more air conditioners and raising the energy bills. It also leads to an increase in the levels of greenhouse gas emissions (global worming) and air pollution. Increased daytime temperatures, reduced nighttime cooling, and higher air pollution levels related to UHIs affects human health as they lead to general discomfort, respiratory difficulties, heat cramps, and exhaustion. UHI has great and direct effects on the environment, on people and on the human health, on energy consumption and on the economy, and on the pavement performance. The factors that affect the formation and intensity of UHI are versatile in nature. These factors vary between geographic location, time of day and season, synoptic weather, city size, city function and city form. The last two factors are the factors which can be controlled in order to mitigate UHI. Recent studies showed more interest in analyzing and quantifying the UHI phenomenon with more focus on the mitigation techniques. It is abundantly clear that there must be strategies to measure, model and control the phenomenon and achieve one of the Sustainable Development Goals, namely; sustainable cities and communities. The primary focus of this concise, yet comprehensive state of the art paper is to present the different technologies to mitigate the urban heat island. This study presented the different UHI definitions, causes, evaluation methods, and finally compared between the different mitigation techniques and set recommendations and guidelines based on a comprehensive literature review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Un, D.: World Urbanization Prospects: The 2014 Revision. United Nations Department of Economics and Social Affairs, Population Division, New York (2015)

    Google Scholar 

  2. Gartland, L.M.: Heat Islands: Understanding and Mitigating Heat in Urban Areas. Routledge, London (2012)

    Book  Google Scholar 

  3. Oke, T.R.: Boundary Layer Climates. Routledge, London (2002)

    Book  Google Scholar 

  4. Asimakopoulos, D., et al.: Energy and climate in the urban built environment. M. Santamouris, University of Athens, Greece (2001). ISBN 1873936907

    Google Scholar 

  5. Oke, T.R.: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108(455), 1–24 (1982)

    Google Scholar 

  6. Oke, T.: The urban energy balance. Prog. Phys. Geogr. 12(4), 471–508 (1988)

    Article  Google Scholar 

  7. Arnfield, A.J.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23(1), 1–26 (2003)

    Article  Google Scholar 

  8. Radhi, H., Sharples, S., Assem, E.: Impact of urban heat islands on the thermal comfort and cooling energy demand of artificial islands—A case study of AMWAJ Islands in Bahrain. Sustain. Cities Soc. 19, 310–318 (2015)

    Article  Google Scholar 

  9. Graves, H., et al.: Cooling Buildings in London: Overcoming the Heat Island. BREPress, Garston (2001)

    Google Scholar 

  10. Howard, L.: The Climate of London: Deduced From Meteorological Observations Made in the Metropolis and at Various Places Around It, vol. 2. E. Wilson, London (1833). Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley [and] R. Hunter

    Google Scholar 

  11. Tan, J., et al.: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 54(1), 75–84 (2010)

    Article  Google Scholar 

  12. Oke, T.R.: City size and the urban heat island. Atmos. Environ. (1967) 7(8), 769–779 (1973)

    Google Scholar 

  13. Katsoulis, B., Theoharatos, G.: Indications of the urban heat island in Athens, Greece. J. Clim. Appl. Meteorol. 24(12), 1296–1302 (1985)

    Article  Google Scholar 

  14. Balling Jr., R.C., Cerveny, R.S.: Long-term associations between wind speeds and the urban heat island of Phoenix, Arizona. J. Clim. Appl. Meteorol. 26(6), 712–716 (1987)

    Article  Google Scholar 

  15. Lee, D.O.: Urban warming?—an analysis of recent trends in London’s heat island. Weather 47(2), 50–56 (1992)

    Article  Google Scholar 

  16. Saitoh, T., Shimada, T., Hoshi, H.: Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 30(20), 3431–3442 (1996)

    Article  Google Scholar 

  17. Yamashita, S.: Detailed structure of heat island phenomena from moving observations from electric tram-cars in metropolitan Tokyo. Atmos. Environ. 30(3), 429–435 (1996)

    Article  Google Scholar 

  18. Kim, Y.-H., Baik, J.-J.: Maximum urban heat island intensity in Seoul. J. Appl. Meteorol. 41(6), 651–659 (2002)

    Article  Google Scholar 

  19. Figuerola, P.I., Mazzeo, N.A.: Urban-rural temperature differences in Buenos Aires. Int. J. Climatol. 18(15), 1709–1723 (1998)

    Article  Google Scholar 

  20. Kłysik, K., Fortuniak, K.: Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos. Environ. 33(24), 3885–3895 (1999)

    Article  Google Scholar 

  21. Wilby, R.L.: Past and projected trends in London’s urban heat island. Weather 58(7), 251–260 (2003)

    Article  Google Scholar 

  22. Jin, H., Cui, P., Huang, M.: Investigation of urban microclimate parameters of city square in Harbin. In: Mediterranean Green Buildings & Renewable Energy, pp. 949–963. Springer (2017)

    Google Scholar 

  23. Aflaki, A., et al.: Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities (2016)

    Google Scholar 

  24. Ichinose, T., Shimodozono, K., Hanaki, K.: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 33(24), 3897–3909 (1999)

    Article  Google Scholar 

  25. Streutker, D.R.: A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 23(13), 2595–2608 (2002)

    Article  Google Scholar 

  26. Solecki, W.D., et al.: Mitigation of the heat island effect in urban New Jersey. Glob. Environ. Chang. Part B Environ. Hazards 6(1), 39–49 (2005)

    Google Scholar 

  27. Elsayed, I.S.: Mitigation of the urban heat island of the city of Kuala Lumpur, Malaysia. Middle East J. Sci. Res. 11(11), 1602–1613 (2012)

    Google Scholar 

  28. Oke, T., Hannell, F.: The form of the urban heat island in Hamilton, Canada, vol. 108. WMO Technical Note (1970)

    Google Scholar 

  29. Oke, T.: Urban climates and global environmental change. In: Thompson, R.D., Perry, A. (eds.) Applied Climatology: Principles & Practices, pp. 273–287. Routledge, New York (1997)

    Google Scholar 

  30. Park, H.-S.: Features of the heat island in Seoul and its surrounding cities. Atmos. Environ. (1967) 20(10), 1859–1866 (1986)

    Google Scholar 

  31. EPA: Compendium of Strategies Urban Heat Island Basics. Reducing Urban Heat Islands (2009). https://www.epa.gov/heat-islands/heat-island-compendium

  32. Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86(3), 370–384 (2003)

    Article  Google Scholar 

  33. Oke, T.R.: The distinction between canopy and boundary-layer urban heat islands. Atmosphere 14(4), 268–277 (1976)

    Article  Google Scholar 

  34. Voogt, J.: How researchers measure urban heat islands. In: United States Environmental Protection Agency (EPA), State and Local Climate and Energy Program, Heat Island Effect, Urban Heat Island Webcasts and Conference Calls (2007)

    Google Scholar 

  35. EPA: Measuring Heat Island. United States Environmental Protection Agency. https://www.epa.gov/heat-islands/measuring-heat-islands. Accessed 1 Jan 2017

  36. Dwivedi, A., Khire, M.: Measurement technologies for urban heat islands. Int. J. Emerg. Technol. Adv. Eng. 4(10), 539–545 (2014)

    Google Scholar 

  37. Voogt, J.A., Oke, T.R.: Complete urban surface temperatures. J. Appl. Meteorol. 36, 1117–1131 (2011)

    Article  Google Scholar 

  38. Rao, P.: Remote sensing of urban heat islands from an environmental satellite. Amer Meteorological Soc 45 Beacon St, Boston, MA 02108–3693, p. 647 (1972)

    Google Scholar 

  39. Shen, H., et al.: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 172, 109–125 (2016)

    Article  Google Scholar 

  40. Li, X., et al.: Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sens. Environ. 174, 233–243 (2016)

    Article  Google Scholar 

  41. Coutts, A.M., et al.: Thermal infrared remote sensing of urban heat: hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 186, 637–651 (2016)

    Article  Google Scholar 

  42. Rotem-Mindali, O., et al.: The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr. 56, 145–153 (2015)

    Article  Google Scholar 

  43. Hu, L., Brunsell, N.A.: A new perspective to assess the urban heat island through remotely sensed atmospheric profiles. Remote Sens. Environ. 158, 393–406 (2015)

    Article  Google Scholar 

  44. Wu, H., et al.: Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinform. 32, 67–78 (2014)

    Google Scholar 

  45. Imhoff, M.L., et al.: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114(3), 504–513 (2010)

    Article  Google Scholar 

  46. Tran, H., et al.: Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinform. 8(1), 34–48 (2006)

    Google Scholar 

  47. Streutker, D.R.: Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 85(3), 282–289 (2003)

    Article  Google Scholar 

  48. Voogt, J.A.: Image representations of complete urban surface temperatures. Geocarto Int. 15(3), 21–32 (2000)

    Article  Google Scholar 

  49. Voogt, J.A., Oke, T.: Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 19(5), 895–920 (1998)

    Article  Google Scholar 

  50. Nichol, J.: Visualisation of urban surface temperatures derived from satellite images. Int. J. Remote Sens. 19(9), 1639–1649 (1998)

    Article  Google Scholar 

  51. Lo, C.P., Quattrochi, D.A., Luvall, J.C.: Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 18(2), 287–304 (1997)

    Article  Google Scholar 

  52. Roth, M., Oke, T., Emery, W.: Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 10(11), 1699–1720 (1989)

    Article  Google Scholar 

  53. Kaloush, K.E.: Climate change impacts on pavement engineering. In: International Sustainable Pavements Workshop: Airlie Center, Warrenton, Virginia (2010)

    Google Scholar 

  54. Washington, DC. Nasa Earth Observatory, Images (2000). Accessed 8 July 2019. https://earthobservatory.nasa.gov/images/928/washington-dc

  55. Bergman, T.L., et al.: Fundamentals of Heat and Mass Transfer. Wiley, Hoboken (2011)

    Google Scholar 

  56. Geyer, M., Stine, W.B.: Power from the Sun (Powerfromthesun. net). JT Lyle Center (2001)

    Google Scholar 

  57. Kaloush, K.E., et al.: The thermal and radiative characteristics of concrete pavements in mitigating urban heat island effects (2008)

    Google Scholar 

  58. Gui, J., et al.: Impact of pavement thermophysical properties on surface temperatures. J. Mater. Civ. Eng. 19(8), 683–690 (2007)

    Article  Google Scholar 

  59. American Concrete Pavement Association: Albedo: a measure of pavement surface reflectance. Concr. Pavement Res. Technol. 3(05), 1–2 (2002)

    Google Scholar 

  60. Rosenfeld, A.H., et al.: Cool communities: strategies for heat island mitigation and smog reduction. Energy Build. 28(1), 51–62 (1998)

    Article  Google Scholar 

  61. Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build. 25(2), 99–103 (1997)

    Article  Google Scholar 

  62. Levine, K.: Cool pavements research and technology (2011)

    Google Scholar 

  63. Pomerantz, M., et al.: The effects of pavements’ temperatures on air temperatures in large cities (2000)

    Google Scholar 

  64. Nichols (Nichols Consulting Engineers, C., CTL Group, Cool Pavements Study (Final), Prepared for: City of Chula Vista (2012)

    Google Scholar 

  65. Lin, J.D., et al.: The study of pavement surface temperature behavior of different permeable pavement materials during summer time. In: Advanced Materials Research. Trans Tech Publ. (2013)

    Google Scholar 

  66. Thermal emittance, in wikipedia (2016). https://en.wikipedia.org/wiki/Thermal_emittance

  67. Golden, J.S., Kaloush, K.E.: Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects. Int. J. Pavement Eng. 7(1), 37–52 (2006)

    Article  Google Scholar 

  68. Goss, D.J., Petrucci, R.H.: General Chemistry Principles & Modern Applications, Petrucci, Harwood, Herring, Madura: Study Guide. Pearson/Prentice Hall, Upper Saddle River (2007)

    Google Scholar 

  69. Mosca, G., Ruskell, T., Tipler, P.A.: Physics for Scientists and Engineers Study Guide, vol. 1. Macmillan, New York (2003)

    Google Scholar 

  70. Gui, J., et al.: Impact of pavement thickness on surface diurnal temperatures. J. Green Build. 2(2), 121–130 (2007)

    Article  Google Scholar 

  71. Herb, W., et al.: Simulation and characterization of asphalt pavement temperatures. Road Mater. Pavement Des. 10(1), 233–247 (2009)

    Google Scholar 

  72. Minhoto, M., et al.: Predicting asphalt pavement temperature with a three-dimensional finite element method. Transp. Res. Rec. J. Transp. Res. Board 1919, 96–110 (2005)

    Article  Google Scholar 

  73. Hermansson, Å.: Simulation model for calculating pavement temperatures including maximum temperature. Transp. Res. Rec. J. Transp. Res. Board 1699, 134–141 (2000)

    Article  Google Scholar 

  74. Qin, Y., Hiller, J.E.: Modeling temperature distribution in rigid pavement slabs: impact of air temperature. Constr. Build. Mater. 25(9), 3753–3761 (2011)

    Article  Google Scholar 

  75. Solaimanian, M., Kennedy, T.W.: Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation. Transp. Res. Rec. (1417) (1993)

    Google Scholar 

  76. Bentz, D.: A Computer Model to Predict the Surface Temperature and Time-of-Wetness of Concrete Pavements and Bridge Decks. National Institute of Standards and Technology, US Department of Commerce (2000)

    Book  Google Scholar 

  77. Ramadhan, R.H., Wahhab, H.I.A.-A.: Temperature variation of flexible and rigid pavements in Eastern Saudi Arabia. Build. Environ. 32(4), 367–373 (1997)

    Article  Google Scholar 

  78. Yavuzturk, C., Ksaibati, K., Chiasson, A.: Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. J. Mater. Civ. Eng. 17(4), 465–475 (2005)

    Article  Google Scholar 

  79. Hermansson, Å.: Mathematical model for paved surface summer and winter temperature: comparison of calculated and measured temperatures. Cold Reg. Sci. Technol. 40(1), 1–17 (2004)

    Article  Google Scholar 

  80. Rizwan, A.M., Dennis, L.Y., Chunho, L.: A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20(1), 120–128 (2008)

    Article  Google Scholar 

  81. Oke, T.: The heat island of the urban boundary layer: characteristics, causes and effects. In: Wind Climate in Cities, pp. 81–107. Springer (1995)

    Google Scholar 

  82. Bentz, D.P.: A computer model to predict the surface temperature and time-of-wetness of concrete pavements and bridge decks. US Department of Commerce, Technology Administration, National Institute of Standards and Technology (2000)

    Google Scholar 

  83. Stempihar, J., et al.: Porous asphalt pavement temperature effects for urban heat island analysis. Transp. Res. Rec. J. Transp. Res. Board 2293, 123–130 (2012)

    Article  Google Scholar 

  84. Taha, H., Konopacki, S., Akbari, H.: Impacts of lowered urban air temperatures on precursor emission and ozone air quality. J. Air Waste Manag. Assoc. 48(9), 860–865 (1998)

    Article  Google Scholar 

  85. Konopacki, S., Akbari, H.: Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City). Lawrence Berkeley National Laboratory (2002)

    Google Scholar 

  86. Lai, L.-W., Cheng, W.-L.: Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 407(8), 2724–2733 (2009)

    Article  Google Scholar 

  87. Stathopoulou, E., et al.: On the impact of temperature on tropospheric ozone concentration levels in urban environments. J. Earth Syst. Sci. 117(3), 227–236 (2008)

    Article  Google Scholar 

  88. Kleerekoper, L., van Esch, M., Salcedo, T.B.: How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 64, 30–38 (2012)

    Article  Google Scholar 

  89. Zhang, X.Q.: The trends, promises and challenges of urbanisation in the world. Habitat Int. 54, 241–252 (2016)

    Article  Google Scholar 

  90. Yuan, F., Bauer, M.E.: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 106(3), 375–386 (2007)

    Article  Google Scholar 

  91. O’Malley, C., et al.: Urban Heat Island (UHI) mitigating strategies: a case-based comparative analysis. Sustain. Cities Soc. 19, 222–235 (2015)

    Article  Google Scholar 

  92. Wang, Y., Chen, L., Kubota, J.: The relationship between urbanization, energy use and carbon emissions: evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 112, 1368–1374 (2016)

    Article  Google Scholar 

  93. Santamouris, M.: Regulating the damaged thermostat of the cities—status, impacts and mitigation challenges. Energy Build. 91, 43–56 (2015)

    Article  Google Scholar 

  94. Al-mulali, U., Sab, C.N.B.C., Fereidouni, H.G.: Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission. Energy 46(1), 156–167 (2012)

    Article  Google Scholar 

  95. Santamouris, M., Paraponiaris, K., Mihalakakou, G.: Estimating the ecological footprint of the heat island effect over Athens. Greece. Climatic Change 80(3–4), 265–276 (2007)

    Article  Google Scholar 

  96. Sarrat, C., et al.: Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 40(10), 1743–1758 (2006)

    Article  Google Scholar 

  97. Yoshikado, H., Tsuchida, M.: High levels of winter air pollution under the influence of the urban heat island along the shore of Tokyo Bay. J. Appl. Meteorol. 35(10), 1804–1813 (1996)

    Article  Google Scholar 

  98. Bartzokas, A., et al.: Climatic characteristics of summer human thermal discomfort in Athens and its connection to atmospheric circulation. Nat. Hazards Earth Syst. Sci. 13(12), 3271–3279 (2013)

    Article  Google Scholar 

  99. Krüger, E., et al.: Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theor. Appl. Climatol. 112(1–2), 127–141 (2013)

    Article  Google Scholar 

  100. Orosa, J.A., et al.: Effect of climate change on outdoor thermal comfort in humid climates. J. Environ. Health Sci. Eng. 12(1), 1 (2014)

    Article  Google Scholar 

  101. Thorsson, S., et al.: Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int. J. Climatol. 31(2), 324–335 (2011)

    Article  Google Scholar 

  102. Hedquist, B.C., Brazel, A.J.: Seasonal variability of temperatures and outdoor human comfort in Phoenix, Arizona, USA. Build. Environ. 72, 377–388 (2014)

    Article  Google Scholar 

  103. Papanastasiou, D., Melas, D., Kambezidis, H.: Air quality and thermal comfort levels under extreme hot weather. Atmos. Res. 152, 4–13 (2015)

    Article  Google Scholar 

  104. Giannopoulou, K., et al.: The influence of air temperature and humidity on human thermal comfort over the greater Athens area. Sustain. Cities Soc. 10, 184–194 (2014)

    Article  Google Scholar 

  105. Katavoutas, G., Georgiou, G.K., Asimakopoulos, D.N.: Studying the urban thermal environment under a human-biometeorological point of view: the case of a large coastal metropolitan city, Athens. Atmos. Res. 152, 82–92 (2015)

    Article  Google Scholar 

  106. Cheung, C.S.C., Hart, M.A.: Climate change and thermal comfort in Hong Kong. Int. J. Biometeorol. 58(2), 137–148 (2014)

    Article  Google Scholar 

  107. Kolokotsa, D., Santamouris, M.: Review of the indoor environmental quality and energy consumption studies for low income households in Europe. Sci. Total Environ. 536, 316–330 (2015)

    Article  Google Scholar 

  108. Sakka, A., et al.: On the thermal performance of low income housing during heat waves. Energy Build. 49, 69–77 (2012)

    Article  Google Scholar 

  109. Wright, A., Young, A., Natarajan, S.: Dwelling temperatures and comfort during the August 2003 heat wave. Build. Serv. Eng. Res. Technol. 26(4), 285–300 (2005)

    Article  Google Scholar 

  110. Lomas, K.J., Kane, T.: Summertime temperatures and thermal comfort in UK homes. Build. Res. Inf. 41(3), 259–280 (2013)

    Article  Google Scholar 

  111. Organization, W.H.: Large analysis and review of European housing and health status (LARES). WHO Regional Office for Europe, Copenhagen (2007)

    Google Scholar 

  112. Zavadskas, E., Raslanas, S., Kaklauskas, A.: The selection of effective retrofit scenarios for panel houses in urban neighborhoods based on expected energy savings and increase in market value: The Vilnius case. Energy Build. 40(4), 573–587 (2008)

    Article  Google Scholar 

  113. Summerfield, A., et al.: Milton Keynes Energy Park Revisited: changes in internal temperatures. In: Proceedings of Comfort and Energy Use in Buildings: Getting them Right, NCEUB International Conference. Citeseer (2006)

    Google Scholar 

  114. Wingfield, J., et al.: Evaluating the impact of an enhanced energy performance standard on load-bearing masonry domestic construction: understanding the gap between designed and real performance: lessons from Stamford Brook (2011)

    Google Scholar 

  115. Mavrogianni, A., et al.: London housing and climate change: impact on comfort and health-preliminary results of a summer overheating study. Open House Int. 35(2), 49 (2010)

    Article  Google Scholar 

  116. Pantavou, K., et al.: Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Build. Environ. 46(2), 339–344 (2011)

    Article  Google Scholar 

  117. Gobakis, K., et al.: Development of a model for urban heat island prediction using neural network techniques. Sustain. Cities Soc. 1(2), 104–115 (2011)

    Article  Google Scholar 

  118. Mihalakakou, G., et al.: Simulation of the urban heat island phenomenon in Mediterranean climates. Pure. appl. Geophys. 161(2), 429–451 (2004)

    Article  Google Scholar 

  119. Mihalakakou, G., et al.: Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. J. Appl. Meteorol. 41(5), 519–527 (2002)

    Article  Google Scholar 

  120. Livada, I., et al.: Determination of places in the great Athens area where the heat island effect is observed. Theor. Appl. Climatol. 71(3–4), 219–230 (2002)

    Article  Google Scholar 

  121. Britain, G.: English House Condition Survey 1991: Energy Report. Great Britain, Department of the Environment (1996)

    Google Scholar 

  122. Filleul, L., et al.: The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ. Health Perspect. 114, 1344–1347 (2006)

    Article  Google Scholar 

  123. Flynn, A., McGreevy, C., Mulkerrin, E.: Why do older patients die in a heatwave? QJM 98(3), 227–229 (2005)

    Article  Google Scholar 

  124. Hajat, S., et al.: Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology 17(6), 632–638 (2006)

    Article  Google Scholar 

  125. Kovats, R.S., Kristie, L.E.: Heatwaves and public health in Europe. Eur. J. Public Health 16(6), 592–599 (2006)

    Article  Google Scholar 

  126. Ledrans, M., et al.: Heat wave 2003 in France: risk factors for death for elderly living at home. Epidemiology 15(4), S125 (2004)

    Article  Google Scholar 

  127. Linares, C., Diaz, J.: Impact of high temperatures on hospital admissions: comparative analysis with previous studies about mortality (Madrid). Eur. J. Public Health 18(3), 317–322 (2008)

    Article  Google Scholar 

  128. Rydin, Y., et al.: Shaping cities for health: complexity and the planning of urban environments in the 21st century. Lancet 379(9831), 2079 (2012)

    Article  Google Scholar 

  129. Rosenfeld, A.H., et al.: Mitigation of urban heat islands: materials, utility programs, updates. Energy Build. 22(3), 255–265 (1995)

    Article  Google Scholar 

  130. Patz, J.A., et al.: Impact of regional climate change on human health. Nature 438(7066), 310–317 (2005)

    Article  Google Scholar 

  131. Baccini, M., et al.: Heat effects on mortality in 15 European cities. Epidemiology 19(5), 711–719 (2008)

    Article  Google Scholar 

  132. Chan, E.Y.Y., et al.: A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J. Epidemiol. Community Health 66(4), 322–327 (2012)

    Article  Google Scholar 

  133. Changnon, S.A., Kunkel, K.E., Reinke, B.C.: Impacts and responses to the 1995 heat wave: a call to action. Bull. Am. Meteorol. Soc. 77(7), 1497–1506 (1996)

    Article  Google Scholar 

  134. Diaz, J., et al.: Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int. J. Biometeorol. 46(3), 145–149 (2002)

    Article  Google Scholar 

  135. Dousset, B., et al.: Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 31(2), 313–323 (2011)

    Article  Google Scholar 

  136. Goggins, W.B., et al.: Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS ONE 7(6), e38551 (2012)

    Article  Google Scholar 

  137. Huynen, M.M., et al.: The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 109(5), 463 (2001)

    Article  Google Scholar 

  138. Kovats, R.S., Hajat, S., Wilkinson, P.: Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occup. Environ. Med. 61(11), 893–898 (2004)

    Article  Google Scholar 

  139. Loughnan, M.E., Nicholls, N., Tapper, N.J.: The effects of summer temperature, age and socioeconomic circumstance on Acute Myocardial Infarction admissions in Melbourne, Australia. Int. J. Health Geogr. 9(1), 1 (2010)

    Article  Google Scholar 

  140. Pirard, P., et al.: Summary of the mortality impact assessment of the 2003 heat wave in France. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 10(7), 153–156 (2005)

    Google Scholar 

  141. Smoyer-Tomic, K.E., Kuhn, R., Hudson, A.: Heat wave hazards: an overview of heat wave impacts in Canada. Nat. Hazards 28(2–3), 465–486 (2003)

    Article  Google Scholar 

  142. Wilkinson, P., et al.: Cold comfort: the social and environmental determinants of excess winter death in England, 1986–1996 (2001)

    Google Scholar 

  143. Dhainaut, J.-F., et al.: Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit. Care 8(1), 1 (2003)

    Article  Google Scholar 

  144. Number of Heat-Related Deaths: Center for Disease Control and Prevention (2012). https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6136a6.htm. Accessed 5 Jan 2017

  145. Climate Change Indicators in the United States: Heat-Related Deaths. EPA, United States Environmental Protection Agency, August 2016. Accessed 5 Jan 2017. https://www.epa.gov/climate-indicators/climate-change-indicators-heat-related-deaths

  146. Klinenberg, E.: Heat Wave: A Social Autopsy of Disaster in Chicago. University of Chicago Press, Chicago (2015)

    Book  Google Scholar 

  147. Stone, B., Hess, J.J., Frumkin, H.: Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities. Environ. Health Perspect. 118(10), 1425–1428 (2010)

    Article  Google Scholar 

  148. Hansen, A., et al.: The effect of heatwaves on mental health in a temperate Australian city. Epidemiology 19(6), S85 (2008)

    Google Scholar 

  149. Cohn, E.G.: Weather and crime. Br. J. Criminol. 30(1), 51–64 (1990)

    Article  Google Scholar 

  150. Cartalis, C., et al.: Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region. Energy Convers. Manag. 42(14), 1647–1656 (2001)

    Article  Google Scholar 

  151. Davies, M., Steadman, P., Oreszczyn, T.: Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy 36(12), 4548–4551 (2008)

    Article  Google Scholar 

  152. Dhalluin, A., Bozonnet, E.: Urban heat islands and sensitive building design–A study in some French cities’ context. Sustain. Cities Soc. 19, 292–299 (2015)

    Article  Google Scholar 

  153. Fung, W., et al.: Impact of urban temperature on energy consumption of Hong Kong. Energy 31(14), 2623–2637 (2006)

    Article  MathSciNet  Google Scholar 

  154. Hassid, S., et al.: The effect of the Athens heat island on air conditioning load. Energy Build. 32(2), 131–141 (2000)

    Article  Google Scholar 

  155. Hirano, Y.: The effects of urban heat island phenomenon on residential and commercial energy consumption. Environ. Syst. Res. 26, 527–532 (1998)

    Article  Google Scholar 

  156. Hirano, Y., Fujita, T.: Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 37(1), 371–383 (2012)

    Article  Google Scholar 

  157. Kikegawa, Y., et al.: Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Appl. Energy 83(6), 649–668 (2006)

    Article  Google Scholar 

  158. Kolokotroni, M., Giannitsaris, I., Watkins, R.: The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol. Energy 80(4), 383–392 (2006)

    Article  Google Scholar 

  159. Santamouris, M., et al.: On the impact of urban climate on the energy consumption of buildings. Sol. Energy 70(3), 201–216 (2001)

    Article  Google Scholar 

  160. Taha, H., et al.: Residential cooling loads and the urban heat island—the effects of albedo. Build. Environ. 23(4), 271–283 (1988)

    Article  Google Scholar 

  161. Santamouris, M., et al.: On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 98, 119–124 (2015)

    Article  Google Scholar 

  162. Kolokotroni, M., et al.: London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 47, 302–311 (2012)

    Article  Google Scholar 

  163. Garnaut, R.: Garnaut Climate Change Review–Update 2011 Update Paper four: Transforming rural land use (2011)

    Google Scholar 

  164. Dell, M., Jones, B.F., Olken, B.A.: Climate change and economic growth: evidence from the last half century, National Bureau of Economic Research (2008)

    Google Scholar 

  165. McPherson, E.G., Muchnick, J.: Effects of street tree shade on asphalt concrete pavement performance (2005)

    Google Scholar 

  166. Zhang, K.: The effect of urban heat islands and traffic wheel pressure on the performance of asphalt pavements. 2015 NCUR (2015)

    Google Scholar 

  167. Ferguson, B., et al.: Reducing urban heat islands: compendium of strategies-cool pavements (2008)

    Google Scholar 

  168. Akbari, H., Menon, S., Rosenfeld, A.: Global cooling: Effect of urban albedo on global temperature. Lawrence Berkeley National Laboratory (2008)

    Google Scholar 

  169. Scruggs, G.: How Much Public Space Does a City Need? Inspiring Better Cities (2015)

    Google Scholar 

  170. Konopacki, S., Akbari, H.: Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City) (2002)

    Google Scholar 

  171. Corburn, J.: Cities, climate change and urban heat island mitigation: localising global environmental science. Urban Stud. 46(2), 413–427 (2009)

    Article  Google Scholar 

  172. Bender, N.: Global Million Cool Roofs Challenge. https://www.k-cep.org/insights/news/million-cool-roofs-launch/. Accessed 25 June 2019

  173. Kaloush, K.: Paving materials and the urban climate. In: TR News, p. 11 (2007)

    Google Scholar 

  174. Systematics, C.: Cool pavement report, EPA cool pavements study—task 5 (2005)

    Google Scholar 

  175. Chen, J., et al.: Field and laboratory measurement of albedo and heat transfer for pavement materials. Constr. Build. Mater. 202, 46–57 (2019)

    Article  Google Scholar 

  176. Pavement Facts, Washington Asphalt Pavement Association (2014). http://www.asphaltwa.com/welcome-facts/. Accessed 23 June 2019

  177. Tran, N., et al.: Strategies for design and construction of high-reflectance asphalt pavements. Transp. Res. Rec. 2098(1), 124–130 (2009)

    Article  Google Scholar 

  178. Pourshams-Manzouri, T.: Pavement temperature effects on overall urban heat island. Arizona State University (2013)

    Google Scholar 

  179. Carlson, J., et al.: Evaluation of in situ Temperatures, Water Infiltration and Regional 1 Feasibility of Pervious Concrete Pavements 2 3 (2008)

    Google Scholar 

  180. Haselbach, L., et al.: Cyclic heat island impacts on traditional versus pervious concrete pavement systems. Transp. Res. Rec. 2240(1), 107–115 (2011)

    Article  Google Scholar 

  181. Taleghani, M., et al.: The impact of heat mitigation strategies on the energy balance of a neighborhood in Los Angeles. Sol. Energy 177, 604–611 (2019)

    Article  Google Scholar 

  182. Levinson, R., et al.: A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products. Sol. Energy Mater. Sol. Cells 94(6), 946–954 (2010)

    Article  Google Scholar 

  183. Santamouris, M.: Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703 (2014)

    Article  Google Scholar 

  184. Pianella, A., et al.: Green roofs in Australia: Review of thermal performance and associated policy development (2016)

    Google Scholar 

  185. Kolokotsa, D.D., et al.: Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 37, 466–474 (2018)

    Article  Google Scholar 

  186. Shickman, K., Rogers, M.: Capturing the true value of trees, cool roofs, and other urban heat island mitigation strategies for utilities. In: Energy Efficiency, pp. 1–12 (2019)

    Google Scholar 

  187. Pisello, A.L.: State of the art on the development of cool coatings for buildings and cities. Sol. Energy 144, 660–680 (2017)

    Article  Google Scholar 

  188. Santamouris, M., et al.: On the energy impact of urban heat island in Sydney: climate and energy potential of mitigation technologies. Energy Build. 166, 154–164 (2018)

    Article  Google Scholar 

  189. Cui, Y.-Q., Zheng, H.-C.: Impact of three-dimensional greening of buildings in cold regions in China on urban cooling effect. Procedia Eng. 169, 297–302 (2016)

    Article  Google Scholar 

  190. ShengYue, W., et al.: Unidirectional heat-transfer asphalt pavement for mitigating the urban heat island effect. J. Mater. Civ. Eng. 26(5), 812–821 (2013)

    Article  Google Scholar 

  191. Akbari, H., Matthews, H.D.: Global cooling updates: reflective roofs and pavements. Energy Build. 55, 2–6 (2012)

    Article  Google Scholar 

  192. Santamouris, M., Ding, L., Osmond, P.: Urban heat island mitigation. In: Decarbonising the Built Environment, pp. 337–355. Springer (2019)

    Google Scholar 

  193. Li, H., et al.: The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environ. Res. Lett. 8(1), 015023 (2013)

    Article  Google Scholar 

  194. Battista, G., et al.: Green roof effects in a case study of Rome (Italy). Energy Procedia 101, 1058–1063 (2016)

    Article  Google Scholar 

  195. Sahnoune, S., Benhassine, N.: Quantifying the impact of green-roofs on urban heat island mitigation. Int. J. Environ. Sci. Dev. 8(2), 116 (2017)

    Article  Google Scholar 

  196. Park, J., et al.: The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 21, 203–212 (2017)

    Article  Google Scholar 

  197. Yang, J., et al.: Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 173, 597–609 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragaa Abd El-Hakim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Hakim, R.A., El-Badawy, S. (2020). Quantifying Effects of Urban Heat Islands: State of the Art. In: Badawy, S., Chen, DH. (eds) Recent Developments in Pavement Engineering. GeoMEast 2019. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-34196-1_4

Download citation

Publish with us

Policies and ethics