Skip to main content

Health Hazards Associated with Wheat and Gluten Consumption in Susceptible Individuals and Status of Research on Dietary Therapies

  • Chapter
  • First Online:
Wheat Quality For Improving Processing And Human Health

Abstract

Wheat accounts for about 20% to over 50% of the total calorie intake of food in regions where it is grown. However, there is a clear perception that disorders related to the consumption wheat are increasing, particularly in Western Europe, North America, and Australia. We consider here the evidence for this perception and discuss strategies and therapies that may be used to reduce the adverse impacts of wheat on the health of susceptible individuals. First, we will introduce the major groups of wheat grain proteins, focusing on those associated with adverse reactions, and discuss in detail the three major adverse reactions triggered by wheat consumption, namely gluten intolerance (celiac disease), wheat allergies, and non-celiac gluten/wheat sensitivity. Finally, will discuss other issues associated with the consumption of gluten-free foods focusing on gluten contamination of products purported to be gluten-free, gluten threshold or tolerance among celiac patients, and food labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afify SM, Pali-Schöll I (2017) Adverse reactions to food: the female dominance – A secondary publication and update. World Allergy Organ J 10:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agostini C, Decsi T, Fewtrell M, Goulet O, Kolacek S, Koletzko B, Fleischer Michaelsen K, Moreno L, Puntis J, Rigo J, Shamir R, Szajewska H, Turck D, van Goudoevero J (2008) Medical Position Paper. Complementary Feeding: A Commentary by the ESPGHAN. Journal of Pediatric Gastroenterology and Nutrition 46:99-110.

    Article  Google Scholar 

  • Al-toma A, Visser OJ, van Roessel HM, von Blomberg BM, Verbeek WH, Scholten PE, Ossenkoppele GJ, Huijgens PC, Mulder CJ (2007) Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells. Blood 109:2243–2249.

    Article  CAS  PubMed  Google Scholar 

  • Altenbach SB, Allen PV (2011) Transformation of the US bread wheat “Butte 86” and silencing of omega-5 gliadin genes. GM Crops 2:66-73.

    Article  PubMed  Google Scholar 

  • Altenbach SB, Tanaka CK, Seabourn BW (2014) Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biol 14:1.

    Article  CAS  PubMed Central  Google Scholar 

  • Altenbach SB, Vensel WH, Dupont FM (2011) The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat Butte 86. BMC Research Notes 4:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 6:337–342.

    Article  CAS  PubMed  Google Scholar 

  • Anderson RP, van Heel DA, Tye-Din JA, Barnardo M, Salio M, Jewell DP, Hill AVS (2005) T cells in peripheral blood after gluten challenge in coeliac disease. Gut 54:1217–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arranz-Otaegui A, Carretero LG, Ramsey MN, Fuller DQ, Richter T (2018) Archaebotanical evidence reveals the origins of bread 14.400 years ago in northeastern Jordan. Proc Natl Acad Sci USA 115:7925-7930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2014) Stress-induced changes in wheat grain composition and quality. Crit Rev Food Sci Nutr 54:1576–1583.

    Article  CAS  PubMed  Google Scholar 

  • Baccioglu A, Kalpaklıoglu F, Altan G (2017) Review of wheat dependent exercise induced anaphylaxis with two cases, and a new co-factor – myorelaxant. J Immunol Clin Res 4:1045.

    Google Scholar 

  • Bai JC, Ciacci C (2017) World gastroenterology organisation global guidelines: celiac disease February 2017. J Clin Gastroenterol 51:755–768.

    Article  PubMed  Google Scholar 

  • Barrett JS, Gibson PR (2012) Fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and nonallergic food intolerance: FODMAPs or food chemicals. Therap Adv Gastroenterol 5:261-268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Battais F, Richard C, Jacquenet S, Denery-Papini S, Moneret-Vautrin DA (2008) Wheat grain allergies: an update on wheat allergens. Eur Ann Allergy Clin Immunol 40:67-76.

    CAS  PubMed  Google Scholar 

  • Becker D, Folck A (2006) Inhibierung der α-Gliadingeneexpression in hexaploiden Brotweizen. Getreidetechnologie 30:153-156.

    Google Scholar 

  • Becker D, Folck A, Knies P, Lörz H, Wieser H (2006) Silencing the a-gliadins in hexaploid bread wheat. In: Lookhart LG, Ng WPK (eds), Gluten Proteins. AACC International, St Paul, MN, pp. 86-89.

    Google Scholar 

  • Becker D, Wieser H, Koehler P, Folck A, Mühling KH, Zörb C (2012) Protein composition and techno-functional properties of transgenic wheat with reduced α-gliadin content obtained by RNA interference. J Appl Bot Food Qual 85:23-33.

    CAS  Google Scholar 

  • Bellinghausen I, Weigmann B, Zevallos V, Maxeiner J, Reißig S, Waisman A, Schuppan D, Saloga J (2018) Wheat amylase-trypsin inhibitors exacerbate intestinal and airway allergic immune responses in humanized mice. J Allergy Clin Immunol https://doi.org/10.1016/j.jaci.2018.02.041

  • Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:185–195.

    Article  CAS  PubMed  Google Scholar 

  • Bethune MT, Khosla C (2012) Oral enzyme therapy for celiac sprue. Methods Enzymol 502:241-271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethune MT, Strop P, Tang Y, Sollid LM, Khosla C (2006) Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Chem Biol 13:637–647.

    Article  CAS  PubMed  Google Scholar 

  • Biesiekierski JR, Muir JG, Gibson PR (2013) Is gluten a cause of gastrointestinal symptoms in people without celiac disease? Curr Allergy Asthma Rep 13:631-638.

    Article  CAS  PubMed  Google Scholar 

  • Biesiekierski JR, Rosella O, Rose R, Liels K, Barrett JS, Shepherd SJ, Gibson PR, Muir JG (2011). Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24:154-176.

    Article  CAS  PubMed  Google Scholar 

  • Brans R, Sauer I, Czaja K, Pfützner W, Merk HF (2012) Microarray-based detection of specific IgE against recombinant ω-5-gliadin in suspected wheat-dependent exercise-induced anaphylaxis. Eur J Dermatol 22:358-362.

    CAS  PubMed  Google Scholar 

  • Brar P, Lee S, Lewis S, Egbuna I, Bhagat G, Green PH (2007) Budesonide in the treatment of refractory coeliac disease. Am J Gastroenterol 102:2265–2269.

    Article  CAS  PubMed  Google Scholar 

  • Brew-Appiah RAT (2014) Epigenetic and post-transcriptional elimination of celiac-causing wheat storage proteins. Ph.D. Dissertation, Washington State University, Pullman, pp. 187.

    Google Scholar 

  • Bromilow S, Gethings LA, Buckley M, Bromley M, Shewry PR, Langridge JI, Clare Mills EN (2017) A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J Proteomics 163:67-75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouns F, Delzenne N, Gibson G (2017) The dietary fibers – FODMAPs controversy. Cereal Foods World 62:98-103.

    Article  Google Scholar 

  • Brouns FJPH, van Buul VJ, Shewry PR (2013) Does wheat make us fat and sick? J Cereal Sci 58:209-215.

    Article  Google Scholar 

  • Bustamante MÁ, Fernández-Gil MP, Churruca I, Miranda J, Lasa A, Navarro V, Simón E (2017) Evolution of Gluten Content in Cereal-Based Gluten-Free Products: An Overview from 1998 to 2016. Nutrients 9:21.

    Article  CAS  PubMed Central  Google Scholar 

  • Caio G, Volta U, Tovoli F, De Giorgio R (2014) Effect of gluten free diet on immune response to gliadin in patients with non-celiac gluten sensitivity. BMC Gastroenterol 14:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambra I, Hernández D, Diaz I, Martinez M (2012) Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases. PLoS One 7:e37234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camerlengo F, Sestili F, Silvestri M, Colaprico G, Margiotta B, Ruggeri R, Lupi R, Masci S, Lafiandra D (2017) Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins. BMC Plant Biol 17:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappetta M, Roth I, Díaz A, Tort J, Roche L (2002) Role of the prosegment of Fasciola hepatica cathepsin L1 in folding of the catalytic domain. Biol Chem 383:1215-1221.

    Article  CAS  PubMed  Google Scholar 

  • Carbonero P, Garcia-Olmedo F (1999) A multigene family of trypsin/α-amylase inhibitors from cereals. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Publishing, Surrey, U.K., pp. 617–634.

    Chapter  Google Scholar 

  • Carnevali A, Gianotti A, Benedett S, Tagliamonte MC, Primiterra M, Laghi L, Danesi F, Valli V, Ndaghijimana M, Capozzi F, Canestrari F, Bordoni A (2014) Role of Kamut® brand khorasan wheat in the counteraction of non-celiac wheat sensitivity and oxidative damage. Food Res Int 63:218–226.

    Article  CAS  Google Scholar 

  • Cataldo F, Montalto G (2007) Celiac disease in the developing countries: a new and challenging public health problem. World J Gastroenterol 13:2153-2159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Catassi C (2015) Gluten Sensitivity. Ann Nutr Metab 67(suppl 2):16–26.

    PubMed  Google Scholar 

  • Catassi C, Alaedini A, Bojarski C, Bonaz B, Bouma G, Carroccio A, Castillejo G, De Magistris L, Dieterich W, Di Liberto D, Elli L, Fasano A, Hadjivassiliou M, Kurien M, Lionetti E, Mulder CJ, Rostami K, Sapone A, Scherf K, Schuppan D, Trott N, Volta U, Zevallos V, Zopf Y, Sanders DS (2017) The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. Nutrients 9:1268.

    Article  CAS  PubMed Central  Google Scholar 

  • Catassi C, Fabiani E, Iacono G, D’Agate C, Francavilla R, Biagi F, Volta U, Accomando S, Picarelli A, De Vitis I, Pianelli G, Gesuita R, Carle F, Mandolesi A, Bearzi I, Fasano A (2007a) A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr 85:160-166.

    Article  CAS  PubMed  Google Scholar 

  • Catassi C, Fasano A (2008) Celiac disease. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Elsevier Inc., pp. 1–26.

    Google Scholar 

  • Catassi C, Gatti S, Lionetti E (2015) World perspective and celiac disease. Epidemiology Dig Dis 33:141–146.

    Article  PubMed  Google Scholar 

  • Catassi C, Kryszak D, Louis-Jacques O, Duerksen DR, Hill I, Crowe SE, Brown AR, Procaccini NJ, Wonderly BA, Hartley P, Moreci J, Bennett N, Horvath K, Burk M, Fasano A (2007b) Detection of Celiac disease in primary care: a multicenter case-finding study in North America. Am J Gastroenterol 102:1454-1460.

    Article  PubMed  Google Scholar 

  • Catassi C, Rossini M, Rätsch IM, Bearzi I, Santinelli A, Castagnani R, Pisani E, Coppa GV, Giorgi PL (1993) Dose dependent effects of protracted ingestion of small amounts of gliadin in coeliac disease children: a clinical and jejunal morphometric study. Gut 34:1515-1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciacci C, Ciclitira P, Hadjivassiliou M, Kaukinen K, Ludvigsson JF, McGough N, Sanders DS, Woodward J, Leonard JN, Swift GL (2015) The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. United European Gastroenterol J 3:121–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciacci C, Maiuri L, Russo I, Tortora R, Bucci C, Cappello C, Santonicola A, Luciani A, Passananti V, Iovino P (2009) Efficacy of budesonide therapy in the early phase of treatment of adult coeliac disease patients with malabsorption: an in vivo / in vitro pilot study. Clin Exp Pharmacol Physiol 36:1170–1176.

    Article  CAS  PubMed  Google Scholar 

  • Cianferoni A (2016) Wheat allergy: diagnosis and management. J Asthma Allergy 9:13-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciclitira PJ, Cerio R, Ellis HJ, Maxton D, Nelufer JM, Macartney JM (1985) Evaluation of a gliadin-containing gluten-free product in coeliac patients. Hum Nutr Clin Nutr 39:303-308.

    CAS  PubMed  Google Scholar 

  • Ciclitira PJ, Evans DJ, Fagg NL, Lennox ES, Dowling RH (1984) Clinical testing of gliadin fractions in coeliac patients. Clin Sci (Lond) 66:357-364.

    Article  CAS  Google Scholar 

  • Ciclitira PJ, Hunter JO, Lennox ES (1980a) Clinical testing of bread made from nullisomic-6A wheats in celiac patients. Lancet 2:234-236.

    Article  CAS  PubMed  Google Scholar 

  • Ciclitira PJ, Hunter JO, Lennox ES (1980b) Clinical testing in celiac patients of bread made from wheats deficient in some α-gliadins. Clinical Sci 59:25.

    Article  Google Scholar 

  • Colomba MS, Gregorini A (2012) Are ancient durum wheats less toxic to celiac patients? A study of α-gliadin from Graziella Ra and Kamut. ScientificWorldJournal 2012:837416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comino I, Moreno M, Real A, Rodríguez-Herrera A, Barro F, Sousa C (2013) The gluten-free diet: Testing alternative cereals tolerated by celiac patients. Nutrients 5:4250-4268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook F, Hughes N, Nibau C, Orman-Ligeza B, Schatlowski N, Uauy C, Trafford K (2018) Barley lys3 mutants are unique amongst shrunken-endosperm mutants in having abnormally large embryos. J Cereal Sci 82:16-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordain L (1999) Cereal grains: humanity’s double-edged sword. World Rev Nutr Diet 84:19–73.

    Article  CAS  PubMed  Google Scholar 

  • Croese J, O’Neil J, Masson J, Cooke S, Melrose W, Pritchard D, Speare R (2006) A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut 55:136–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukrowska B, Sowińska A, Bierła JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U (2017) Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota - Key players in the pathogenesis of celiac disease. World J Gastroenterol 23:7505–7518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Palma G, Nadal I, Carmen Collado M, Sanz Y, Collado M (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102:1154–1160.

    Article  CAS  PubMed  Google Scholar 

  • Dewar DH, Amato M, Ellis HJ, Pollock EL, Gonzalez-Cinca N, Wieser H, Ciclitira PJ (2006) The toxicity of high molecular weight glutenin subunits of wheat to patients with coeliac disease. Eur J Gastroenterol Hepatol 18:483-491.

    Article  CAS  PubMed  Google Scholar 

  • Di Sabatino A, Rovedatti L, Rosado MM, Carsetti R, Corazza GR, MacDonald TT (2009) Increased expression of mucosal addressin cell adhesion molecule 1 in the duodenum of patients with active celiac disease is associated with depletion of integrin alpha4beta7-positive T cells in blood. Hum Pathol 40:699–704.

    Article  CAS  PubMed  Google Scholar 

  • DiGiacomo DV, Tennyson CA, Green PH, Demmer RT (2013) Prevalence of gluten-free diet adherence among individuals without celiac disease in the USA: results from the Continuous National Health and Nutrition Examination Survey 2009–2010. Scand J Gastroenterol 48:921-925.

    Article  PubMed  Google Scholar 

  • Do AB, Khuda SE, Sharma GM (2018) Undeclared food allergens and gluten in commercial food products analyzed by ELISA. J AOAC Int 101:23-35.

    Article  CAS  PubMed  Google Scholar 

  • Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB (2011) Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry Proteome Sci 9:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-celltargeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581.

    Article  CAS  PubMed  Google Scholar 

  • Ehren J, Moron B, Martin E, Bethune MT, Gray GM, Khosla C (2009) A food-grade enzyme preparation with modest gluten detoxification properties. PLoS ONE 4:e6313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ejderhamn J, Veesess B, Strandvik B (1988) The long term effect of continual ingestion of wheat starch-containing gluten-free products in celiac patients. In: Kumar PJ (ed) Coeliac disease: one hundred years. Leeds, United Kingdom, Leeds University Press, pp. 294–297.

    Google Scholar 

  • Engstrom N, Saenz-Mendez P, Scheers J, Scheers N (2017) Towards Celiac-safe foods: Decreasing the affinity of transglutaminase 2 for gliadin by addition of ascorbyl palmitate and ZnCl2 as detoxifiers. Sci Rep 7:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escarnot E, Gofflot S, Sinnaeve G, Dubois B, Bertin P, Mingeot D (2018) Reactivity of gluten proteins from spelt and bread wheat accessions towards A1 and G12 antibodies in the framework of celiac disease. Food Chem 268:522–532.

    Article  CAS  PubMed  Google Scholar 

  • Farage P, de Medeiros Nóbrega YK, Pratesi R, Gandolfi L, Assunção P, Zandonadi RP (2017) Gluten contamination in gluten-free bakery products: a risk for coeliac disease patients. Public Health Nutr 20:413-416.

    Article  PubMed  Google Scholar 

  • Fasano A (2007) https://www.slideshare.net/saturni/gliadin-intestinal-permeability-and-celiac-disease-from-innate-immunity-to-autoimmunity (retried August 2018).

  • Fasano A (2012) Leaky gut and autoimmune diseases. Clinic Rev Allerg Immunol 42:71-78.

    Article  CAS  Google Scholar 

  • Frisoni M, Corazza GR, Lafiandra D, De Ambroggio E, Filipponi C, Bonvicini F, Borasio E, Porcheddu E, Gasbarrini G (1995) Wheat deficient in gliadins: promising tool for coeliac disease. Gut 36:375-378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritschy F, Windemann H, Baumgarten E (1985) Bestimmung von Weizen gliadinen in Lebensmitteln mittels ELISA [Determination of wheat gliadins in foods by ELISA]. Z Lebensm Unters Forsch 181: 379-385.

    Article  CAS  PubMed  Google Scholar 

  • Gass J, Bethune MT, Siegel M, Spencer A, Khosla C (2007) Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 133:472-480

    Article  CAS  PubMed  Google Scholar 

  • Gass J, Khosla C (2007) Prolyl endopeptidases. Cell Mol Life Sci 64:345-355.

    Article  CAS  PubMed  Google Scholar 

  • Gélinas P, Gagnon F (2018) Inhibitory activity towards human α-amylase in wheat flour and gluten. Food Sci Technol 53:467-474.

    Google Scholar 

  • Gelinas P, McKinnon C (2016) Gluten weight in ancient and modern wheat and the reactivity of epitopes towards R5 and G12 monoclonal antibodies. Int J Food Sci Technol 51:1801–1810.

    Article  CAS  Google Scholar 

  • Gessendorfer B, Hartmann G, Wieser H, Koehler P (2011) Determination of celiac disease-specific peptidase activity of germinated cereals. Eu Food Res Technol 232:205–209.

    Article  CAS  Google Scholar 

  • Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnálek P, Zádorová Z, Palmer T, Donoghue S; Natalizumab Pan-European Study Group (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32.

    Article  CAS  PubMed  Google Scholar 

  • Gianfrani C, Camarca A, Mazzarella G, Di Stasio L, Giardullo N, Ferranti P, Picariello G, Rotondi Aufiero V, Picascia S, Troncone R, Pogna N, Auricchio S, Mamone G (2015) Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease. Mol Nutr Food Res 59:1844-1854.

    Article  CAS  PubMed  Google Scholar 

  • Gibert A, Espadaler M, Angel Canela M, Sánchez A, Vaqué C, Rafecas M (2006) Consumption of gluten-free products: should the threshold value for trace amounts of gluten be at 20, 100 or 200 p.p.m.? Eur J Gastroenterol Hepatol 18:1187-1195.

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J, Piston F, Altamirano-Fortoul R, Real A, Comino I, Sousa A, Rosell CM, Barro F (2014) Reduced-gliadin wheat bread: an alternative to the gluten-free diet for consumers suffering gluten-related pathologies. PLoS One 9:e90898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Piston F, Hernando A, Alvarez JB, Shewry PR, Barro F (2008) Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. J Cereal Sci 48:565-568.

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Pistón F, Shewry PR, Tosi P, Barro F (2011) Suppression of gliadins results in altered protein body morphology in wheat. J Exp Bot 62:4203-4213.

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J, Piston F, Tollefsen S, Sollid LM, Barro F (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc Natl Acad Sci USA 107:17023-17028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilissen LJWJ, van der Meer IM, Smulders MJM (2014) Reducing the incidence of allergy and intolerance to cereals. J Cereal Sci 59:337-353.

    Article  CAS  Google Scholar 

  • Gillett HR, Arnott ID, McIntyre M, Campbell S, Dahele A, Priest M, Jackson R, Ghosh S (2002) Successful infliximab treatment for steroid-refractory celiac disease: a case report. Gastroenterology 122:800–805.

    Article  PubMed  Google Scholar 

  • Godfrey D, Hawkesford MJ, Powers SJ, Millar S, Shewry PR (2010) Effects of crop nutrition on wheat grain composition and end use quality. J Agric Food Chem 58:3012–3021.

    Article  CAS  PubMed  Google Scholar 

  • Goryunova SV, Salentijn EM, Chikida NN, Kochieva EZ, van der Meer IM, Gilissen LJ, Smulders MJ (2012) Expansion of the gamma-gliadin family in Aegilops and Triticum. BMC Evol Biol 12:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorini A, Colomba M, Ellis HJ, Ciclitira PJ (2009) Immunogenicity characterization of two ancient wheat α-gliadin peptides related to coeliac disease. Nutrients 1:276-290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadjivassiliou M, Sanders D, Grünewald RA, Woodroofe N, Boscolo S, Aeschlimann D (2010) Gluten sensitivity: from gut to brain. Lancet Neurol 9:318–330.

    Article  CAS  PubMed  Google Scholar 

  • Hadjivassiliou M, Sanders DD, Aeschlimann DP (2015) Gluten-Related Disorders: Gluten Ataxia. Dig Dis 33:264–268.

    Article  PubMed  Google Scholar 

  • Hajas L, Scherf KA, Török K, Bugyi Z, Schall E, Poms RE, Koehler P, Tömösközi S (2018) Variation in protein composition among wheat (Triticum aestivum L.) cultivars to identify cultivars suitable as reference material for wheat gluten analysis. Food Chem 267:387–394.

    Article  CAS  PubMed  Google Scholar 

  • Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH; HERMES Trial Group (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688.

    Article  CAS  PubMed  Google Scholar 

  • Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci USA 108:486–491.

    Article  PubMed  Google Scholar 

  • Henry AG, Brooks AS, Piperno DR (2014) Plant foods and the dietary ecology of Neanderthals and early modern humans. J Human Evolution 69:44-54.

    Article  Google Scholar 

  • Hernando A, Mujico JR, Mena MC, Lombardía M, Méndez E (2008) Measurement of wheat gluten and barley hordeins in contaminated oats from Europe, the United States and Canada by Sandwich R5 ELISA. Eur J Gastroenterol Hepatol 20:545-554.

    Article  PubMed  Google Scholar 

  • Herold KC, Gitelman S, Greenbaum C, Puck J, Hagopian W, Gottlieb P, Sayre P, Bianchine P, Wong E, Seyfert-Margolis V, Bourcier K, Bluestone JA; Immune Tolerance Network ITN007AI Study Group. (2009) Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin Immunol 132:166–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hischenhuber C, Crevel R, Jarry B, Mäki M, Moneret-Vautrin DA, Romano A, Troncone R, Ward R (2006) Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment Pharmacol Ther 23:559-575.

    Article  CAS  PubMed  Google Scholar 

  • Huebener S, Tanaka CK, Uhde M, Zone JJ, Vensel WH, Kasarda DD, Beams L, Briani C, Green PH, Altenbach SB, Alaedini A (2015) Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J Proteome Res14:503−511.

    Article  CAS  PubMed  Google Scholar 

  • Huibregtse IL, Marietta EV, Rashtak S, Koning F, Rottiers P, David CS, van Deventer SJ, Murray JA (2009) Induction of antigen specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo DQ8 transgenic mice. J Immunol 183:2390–2396.

    Article  CAS  PubMed  Google Scholar 

  • Inomata N (2009) Wheat allergy. Curr Opin Allergy Clin Immunol 9:238–243.

    Article  CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191.

    Article  CAS  Google Scholar 

  • Ivarsson A1, Myléus A, Norström F, van der Pals M, Rosén A, Högberg L, Danielsson L, Halvarsson B, Hammarroth S, Hernell O, Karlsson E, Stenhammar L, Webb C, Sandström O, Carlsson A (2013) Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 131:e687-e694.

    Article  Google Scholar 

  • Janssen FW, Hägele GH, de Baaij JA (1991) Gluten free products, the Dutch experience. In: Mearin ML, Mulder CJJ (eds) Coeliac Disease. Dordrech: Kluwer Academic, pp. 95–100.

    Chapter  Google Scholar 

  • Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills ENC (2005) Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. J Allergy Clin Immunol 115:163–170.

    Article  CAS  PubMed  Google Scholar 

  • Jouanin A, Gilissen LJWJ, Boyd LA, Cockram J, Leigh FJ, Wallington EJ, van den Broeck HC, van der Meer IM, Schaart JG, Visser RGF, Smulders MJM (2018) Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Res Int1 10:11-21.

    Google Scholar 

  • Juhász A, Belova T, Florides CG, Maulis C, Fischer I, Gell G, Birinyi Z, Ong J, Keeble-Gagnère G, Maharajan A, Ma W, Gibson P, Jia J, Lang D, Mayer KFX, Spannagl M, International Wheat Genome Sequencing Consortium, Tye-Din JA, Appels R, Olsen O-A (2018) Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci Adv 4:eaar8602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhász A, Haraszi R, Maulis C (2015) ProPepper: a curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families. Database 2015:1–16.

    Google Scholar 

  • Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209:2395-2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabbani TA, Goldberg A, Kelly CP, Pallav K, Tariq S, Peer A, Hansen J, Dennis M, Leffler DA (2012) Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Aliment Pharmacol Ther 35:723-729.

    Article  CAS  PubMed  Google Scholar 

  • Kapoerchan VV, Wiesner M, Overhand M, van der Marel GA, Koning F, Overkleeft HS (2008) Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with coeliac disease. Bioorg Med Chem 16:2053–2062.

    Article  CAS  PubMed  Google Scholar 

  • Kasarda DD (2013) Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J Agric Food Chem 61:1155-1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasarda DD, Adalsteins E, Lew EJ-L, Lazo GR, Altenbach SB (2013) Farinin:characterisation of a novel wheat endosperm protein belonging to the prolamin superfamily J Agric Food Chem 61:2407-2417.

    Article  CAS  PubMed  Google Scholar 

  • Kaukinen K, Collin P, Holm K, Rantala I, Vuolteenaho N, Reunala T, Mäki M (1999) Wheat starch-containing gluten-free flour products in the treatment of coeliac disease and dermatitis herpetiformis. A long-term follow-up study. Scand J Gastroenterol 34:163-169.

    Article  CAS  PubMed  Google Scholar 

  • Keech CL, Dromey J, Chen Z, Anderson RP, McCluskey J (2009) Immune tolerance induced by peptide immunotherapy in an HLA-DQ2-dependent mouse model of gluten immunity. Gastroenterology 136:A355.

    Article  Google Scholar 

  • Kneen E, Sandstedt RM (1946) Distribution and general properties of an amylase inhibitor in cereals. Arch Biochem 9:235–249.

    CAS  PubMed  Google Scholar 

  • Koning F (2012) Celiac disease: quantity matters. Semin Immunopathol 34:541–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotaniemi-Syrjänen A, Palosuo K, Jartti T, Kuitunen M, Pelkonen AS, Mäkelä MJ (2010) The prognosis of wheat hypersensitivity in children. Pediatr Allergy Immunol 21(2 Pt 2):e421-e428.

    Article  PubMed  Google Scholar 

  • Lähdeaho ML, Kaukinen K, Laurila K, Vuotikka P, Koivurova OP, Kärjä-Lahdensuu T, Marcantonio A, Adelman DC, Mäki M (2014) Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology 146:1649-1658.

    Article  CAS  PubMed  Google Scholar 

  • Lebwohl B, Sanders DS, Green PHR (2018) Coeliac disease. Lancet 391:70-81.

    Article  PubMed  Google Scholar 

  • Lee HJ, Anderson Z, Ryu D (2014) Gluten Contamination in Foods Labeled as ‘Gluten Free’ in the United States. J Food Prot 77:1830–1833.

    Article  CAS  PubMed  Google Scholar 

  • Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC (2016) Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes. J Proteome Res 15:3108-3117.

    Article  CAS  PubMed  Google Scholar 

  • Leonard MM, Sapone A, Catassi C, Fasano A (2017) Celiac disease and nonceliac gluten sensitivity: A review. JAMA 318:647-656.

    Article  PubMed  Google Scholar 

  • Lionetti E, Gatti S, Pulvirenti A, Catassi C (2015) Celiac disease from a global perspective. Best Pract Res Clin Gastroenterol 29:365-379.

    Article  PubMed  Google Scholar 

  • Ludvigsson JF, Fasano A (2012) Timing of introduction of gluten and celiac disease risk. Ann Nutr Metab 60 Suppl 2:22-29.

    Article  CAS  PubMed  Google Scholar 

  • Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, Hadjivassiliou M, Kaukinen K, Kelly CP, Leonard JN, Lundin KE, Murray JA, Sanders DS, Walker MM, Zingone F, Ciacci C (2013) The Oslo definitions for coeliac disease and related terms. Gut 62:43-52.

    Article  PubMed  Google Scholar 

  • Mamone G, Picariello G, Addeo F, Ferranti P (2011) Proteomic analysis in allergy and intolerance to wheat products. Expert Rev Proteomics 8:95-115.

    Article  CAS  PubMed  Google Scholar 

  • Marion D, Douliez J-P, Gautier M-F, Elmorjani K (2004) Plant lipid transfer proteins: relationships between allergenicity and structural, biological and technological properties. In: Mills ENC, Shewry PR (eds), Plant Food Allergens, Oxford: Blackwell Publishing, pp. 57-69.

    Google Scholar 

  • Martin J, Geisel T, Maresch C, Krieger K, Stein J (2013) Inadequate nutrient ixntake in patients with celiac disease: results from a German dietary survey. Digestion 87:240-246.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Nakase M, Alvarez AM, Izumi H, Kato T, Tada Y (2006) Rice-seed allergenic proteins and hypoallergenic rice. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease, CRC Press, pp. 493–511.

    Google Scholar 

  • McCarville JL, Caminero A, Verdu EF (2015) Celiac treatments, adjuvant therapies and alternatives to the gluten-free diet. In: Arranz E, Fernández-Bañares F, Rosell CM, Rodrigo L, Peña AS (eds) Advances in the understanding of gluten related pathology and the Evolution of Gluten-Free Foods. OmniaScience, Barcelona, Spain, pp. 223-253.

    Chapter  Google Scholar 

  • Mei HE, Frölich D, Giesecke C, Loddenkemper C, Reiter K, Schmidt S, Feist E, Daridon C, Tony HP, Radbruch A, Dörner T (2010) Steady state generation of mucosal IgA+ plasmablasts is not abrogated by B cell depletion therapy with rituximab. Blood 116:5181–5190.

    Article  CAS  PubMed  Google Scholar 

  • Metakovsky EV, Davidov SD, Chernakov VM, Upelniek VP (1993) Gliadin allele identification in common wheat. III. Frequency of occurrence and appearance of spontaneous mutations at the gliadin-coding loci. J Genet Breed 47:221-236.

    CAS  Google Scholar 

  • Miranda J, Simón E (2017) Gluten Content Change Over the Two Last Decades. In: E. Simón et al. (eds) Nutritional and Analytical Approaches of Gluten-Free Diet in Celiac Disease, SpringerBriefs in Food, Health, and Nutrition, Springer, pp. 47-57.

    Google Scholar 

  • Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F (2008) Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: Implications for coeliac disease. Gut 57:25–32.

    Article  CAS  PubMed  Google Scholar 

  • Mitea C, Salentijn EM, van Veelen P, Goryunova SV, van der Meer IM, van den Broeck HC, Mujico JR, Montserrat V, Gilissen LJ, Drijfhout JW, Dekking L, Koning F, Smulders MJ (2010) A universal approach to eliminate antigenic properties of alpha-gliadin peptides in celiac disease. PloS One 5:e15637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moehs CP, Austil WJ, Holm A, Large TAG, Loeffler D, Mullenberg J, Schnable PS, Skinner W, van Boxtel J, Wu L, McGuire C (2018) Development of reduced gluten wheat enabled by determination of the genetic basis of the lys3a low hordein barley mutant. bioRxiv https://doi.org/10.1101/354548

  • Molberg Ø, Uhlen AK, Jensen T, Flæte NS, Fleckenstein B, Arentz-Hansen H, Raki M, Lundin KEA, Sollid LM (2005) Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease. Gasteroenterology 128:393-401.

    Article  CAS  Google Scholar 

  • Morris CF (2002) Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633-647.

    Article  CAS  PubMed  Google Scholar 

  • Munck L (1992) The case of high-lysine barley breeding. In: Shewry PR (ed), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB International, Wallingford Oxon, pp. 573-601.

    Google Scholar 

  • Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56:1669–1674.

    Article  CAS  PubMed  Google Scholar 

  • Nambu M (2006) Rice Allergy. Pediatrics 117:2331.

    Article  PubMed  Google Scholar 

  • Nistal E, Caminero A, Herrán AR, Pérez-Andres J, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Casqueiro J (2016) Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active celiac disease vs non-celiac disease controls. J Appl Microbiol 120:1691–1700.

    Article  CAS  PubMed  Google Scholar 

  • Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Rodríguez-Aparicio LB, Casqueiro J (2012) Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94:1724–1729.

    Article  CAS  PubMed  Google Scholar 

  • Olexová L, Dovičovičová L, Švec M, Siekel P, Kuchta T (2006) Detection of gluten-containing cereals in flours and “gluten-free” bakery products by polymerase chain reaction. Food Control 17:234-237.

    Article  CAS  Google Scholar 

  • Olivares M, Walker AW, Capilla A, Benítez-Páez A, Palau F, Parkhill J, Castillejo G, Sanz Y (2018) Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 6:36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Sánchez JP, Cabrera-Chávez F, de la Barca AM (2013) Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients. Nutrients 5:4174-4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne TB (1924) The vegetable proteins, 2nd edition. Longmans Green & Co, London, UK.

    Google Scholar 

  • Osorio C, Wen N, Gemini R, Zemetra R, von Wettstein D, Rustgi S (2012) Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes. Funct Integr Genomics 12:417-438.

    Article  CAS  PubMed  Google Scholar 

  • Osorio CE, Wen N, Mejias JH, Liu B, Reinbothe S, von Wettstein D, Rustgi S (2019) Development of wheat genotypes expressing a glutamine-specific endoprotease from barley and a prolyl endopeptidase from Flavobacterium meningosepticum or Pyrococcus furiosus as a potential remedy to celiac disease. Funct Integr Genomics 19:123–136.

    Google Scholar 

  • Panda R, Taylor SL, Goodman RE (2010) Development of a Sandwich Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Buckwheat Residues in Food. J Food Sci 75:T110-T117.

    Article  CAS  PubMed  Google Scholar 

  • Pasha I, Saeed F, Tauseef Sultan M, Batool R, Aziz M, Ahmed W (2016) Wheat allergy and intolerance; Recent updates and perspectives. Crit Rev Food Sci Nutr 56:13–24.

    Article  CAS  PubMed  Google Scholar 

  • Pastorello EA, Farioli L, Conti A, Pravettoni V, Bonomi S, Iametti S, Fortunato D, Scibilia J, Bindslev-Jensen C, Ballmer-Weber B, Robino AM, Ortolani C (2007) Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Allergenic molecules recognized by double-blind, placebo-controlled food challenge. International archives of allergy and immunology 144:10–22.

    Article  CAS  PubMed  Google Scholar 

  • Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB (2007) The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 26:757–766.

    Article  CAS  PubMed  Google Scholar 

  • Peräaho M, Kaukinen K, Paasikivi K, Sievänen H, Lohiniemi S, Mäki M, Collin P (2003) Wheat-starch-based gluten-free products in the treatment of newly detected coeliac disease: prospective and randomized study. Aliment Pharmacol Ther 17:587–594.

    Article  PubMed  Google Scholar 

  • Perez-Gregorio MR, Días R, Mateus N, de Freitas V (2018) Identification and characterization of proteolytically resistant gluten-derived peptides Food Funct 9:1726–1735.

    Article  CAS  PubMed  Google Scholar 

  • Pinier M, Verdu EF, Nasser-Eddine M, David CS, Vézina A, Rivard N, Leroux JC (2009) Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 136:288–298.

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Sánchez MI, Verdu EF, Liu E, Bercik P, Green PH, Murray JA, Guandalini S, Moayyedi P (2016) Gluten introduction to infant feeding and risk of celiac disease: Systematic review and meta-analysis. J Pediatr 168:132–43.

    Article  CAS  PubMed  Google Scholar 

  • Piston F, Gil-Humanes J, Rodríguez-Quijano M, Barro F (2011) Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has No major effect on dough gluten strength. PLoS One 6:e24754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizzuti D, Buda A, D’Odorico A, D’Incà R, Chiarelli S, Curioni A, Martines D (2006) Lack of intestinal mucosal toxicity of Triticum monococcum in coeliac disease patients. Scand J Gastroenterol 41:1305–1311.

    Article  CAS  PubMed  Google Scholar 

  • Pogna NE, Monari AM, Cacciatori P, Redaelli R, Ng PKW (1998) Development and characterization of bread wheat lines lacking chromosome 1B-, 1D-, 6A- and 6D-encoded prolamins. In: Proc. IXth Intern. Wheat Genetics Symposium, Saskatoon, Saskatchewan, Canada, pp. 265-268.

    Google Scholar 

  • Pontieri P, Mamone G, De Caro S, Tuinstra MR, Roemer E, Okot J, De Vita P, Ficco DB, Alifano P, Pignone D, Massardo DR, Del Giudice L (2013) Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. J Agric Food Chem 61:2565-2571.

    Article  CAS  PubMed  Google Scholar 

  • Prandi B, Faccini A, Tedeschi T, Galaverna G, Sforza S (2013) LC/MS analysis of proteolytic peptides in wheat extracts for determining the content of the allergen amylase/trypsin inhibitor CM3: Influence of growing area and variety. Food Chem140:141-146.

    Article  CAS  PubMed  Google Scholar 

  • Prandi B, Tedeschi T, Folloni S, Galaverna G, Sforza S (2017) Peptides from gluten digestion: A comparison between old and modern wheat varieties. Food Res Int 91:92–102.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A; International Wheat Genome Sequencing Consortium, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361:eaar6089.

    Google Scholar 

  • Rashtak S, Murray JA (2012) Review article: coeliac disease, new approaches to therapy. Aliment Pharmacol Ther 35:768-781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redaelli R, Metakovsky EV, Davydov SD, Pogna NE (1994) Two-dimensional mapping of gliadins using biotypes and null mutants of common wheat cultivar Saratovskaya 29. Hereditas 121:131-137.

    Article  Google Scholar 

  • Reinisch W, de Villiers W, Bene L, Simon L, Rácz I, Katz S, Altorjay I, Feagan B, Riff D, Bernstein CN, Hommes D, Rutgeerts P, Cortot A, Gaspari M, Cheng M, Pearce T, Sands BE (2010) Fontolizumab inmoderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis 16:233–242.

    Article  PubMed  Google Scholar 

  • Ribeiro M, Nunes FM, Rodriguez-Quijano M, Carrillo JM, Branlard G, Igrejas G (2018) Next-generation therapies for celiac disease: The gluten-targeted approaches. Trends Food Sci Technol 75:56-71.

    Article  CAS  Google Scholar 

  • Ribeiro M, Rodriguez-Quijano M, Nunes FM, Carrillo JM, Branlard G, Igrejas G (2016) New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem 213:8–18.

    Article  CAS  PubMed  Google Scholar 

  • Rosella CM, Barro F, Sousa C, Mena MC (2014) Cereals for developing gluten-free products and analytical tools for gluten detection. J Cereal Sci 59:354-364.

    Article  CAS  Google Scholar 

  • Rubio-Tapia A, Ludvigsson JF, Brantner TL, Murray JA, Everhart JE (2012) The prevalence of celiac disease in the United States. Am J Gastroenterol 107:1538-1544.

    Article  PubMed  Google Scholar 

  • Rustgi S, Wen N, Osorio C, Brew-Appiah RAT, Wen S, Gemini R, Mejias JH, Ankrah N, Moehs CP, von Wettstein D (2014) Natural dietary therapies for the ‘gluten syndrome’, Scientia Danica, Series B, Biologica 3:1-87.

    Google Scholar 

  • Salcedo G, Sanchez-Monge R, Garcia-Casado G, Armentia A, Gomez L, Barber D (2004) The cereal α-amylase/trypsin inhibitor family associated with bakers’ asthma and food allergy. In Mills ENC, Shewry PR (eds) Plant food allergens. Blackwell Science, Oxford U.K., pp. 70-86.

    Google Scholar 

  • Salentijn EM, Esselink DG, Goryunova SV, van der Meer IM, Gilissen LJ, Smulders MJ (2013) Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing. BMC Genomics 14:905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salentijn EM, Goryunova SV, Bas N, van der Meer IM, van den Broeck HC, Bastien T, Gilissen LJ, Smulders MJ (2009) Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci. BMC Genomics 10:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmi M, Jalkanen S (1999) Molecules controlling lymphocyte migration to the gut. Gut 45:148–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez de la Hoz P, Castagnaro A, Carbonero P (1994) Sharp divergence between wheat and barley at loci encoding novel members of the trypsin/alpha-amylase inhibitors family. Plant Mol Biol 26:1231-1236.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902-910.

    Article  CAS  PubMed  Google Scholar 

  • Sandborn WJ, Colombel JF, Frankel M, Hommes D, Lowder JN, Mayer L, Plevy S, Stokkers P, Travis S, Van Assche G, Baumgart DC, Targan SR (2010) Anti-CD3 antibody visilizumab is not effective in patients with intravenous corticosteroid-refractory ulcerative colitis. Gut 59:1485–1492.

    Article  CAS  PubMed  Google Scholar 

  • Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherf KA, Brockow K, Biedermann T, Koehler P, Wieser H (2016) Wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy 46:10-20.

    Article  CAS  PubMed  Google Scholar 

  • Scherf KA, Wieser H, Koehler P (2018) Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products. Food Res Int 110:62-72.

    Article  CAS  PubMed  Google Scholar 

  • Schilling K, Körner A, Sehmisch S, Kreusch A, Kleint R, Benedix Y, Schlabrakowski A, Wiederanders B (2009) Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases. Biol Chem 390:167-174.

    Article  CAS  PubMed  Google Scholar 

  • Schuppan D, Junker Y, Barisani D (2009) Celiac disease: from pathogenesis to novel therapies. Gastroenterology 137:1912-1933.

    Article  CAS  PubMed  Google Scholar 

  • Schuppan D, Pickert G, Ashfaq-Khan M, Zevallos V (2015) Non-celiac wheat sensitivity: Differential diagnosis, triggers and implications. Best Pract Res Clin Gastroenterol 29:469-476.

    Article  CAS  PubMed  Google Scholar 

  • Seilmeier W, Belitz H-D, Wieser H (1991) Separation and quantitative determination of high-molecular-weight subunits of glutenin from different wheat varieties and genetic variants of the variety Sicco. Z Lebensm Unters Forsch 192:124-129.

    Article  CAS  Google Scholar 

  • Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279.

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Qiao SW, Arentz-Hansen H, Molberg Ø, Gray GM, Sollid LM, Khosla C (2005) Identification and analysis of multivalent proteolytically resistant peptides from gluten: Implications for celiac sprue. J Proteome Res 4:1732–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR (2018) Do ancient types of wheat have health benefits compared with modern bread wheat? J Cereal Sci 79:469-476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shewry PR, D’Ovidio R, Lafiandra D, Jenkins JA, Mills ENC, Bekes F (2009) Wheat grain proteins. In: Khan K, Shewry PR (eds)Wheat Chemistry and technology. AACC International Inc., St. Paul, MN, pp. 223-298.

    Google Scholar 

  • Shewry PR, Pellny TK, Lovegrove A (2016) Is modern wheat bad for health? Nat Plant 2:1-3.

    Article  Google Scholar 

  • Shewry PR, Tatham AS (2016) Improving wheat to remove coeliac epitopes but retain functionality. J Cereal Sci 67:12-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: A reassessment. J Cereal Sci 4:97-106.

    Article  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Halford NG (1999) The prolamins of the Triticeae. In: Shewry PR, Casey R (eds) Seed Proteins, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 37–84.

    Chapter  Google Scholar 

  • Sicherer SH (2001) Clinical implications of cross-reactive food allergens. J Allergy Clin Immunol 108:881-890.

    Article  CAS  PubMed  Google Scholar 

  • Siegel M, Bethune MT, Gass J, Ehren J, Xia J, Johannsen A, Stuge TB, Gray GM, Lee PP, Khosla C (2006) Rational design of combination enzyme therapy for coeliac sprue. Chem Biol 13:649–658.

    Article  CAS  PubMed  Google Scholar 

  • Siegel M, Garber ME, Spencer AG, Botwick W, Kumar P, Williams RN, Kozuka K, Shreeniwas R, Pratha V, Adelman DC (2012) Safety, tolerability, and activity of ALV003: results from two phase I single, escalating-dose clinical trials. Dig Dis Sci 57:440-450.

    Article  CAS  PubMed  Google Scholar 

  • Skodje GI, Sarna VK, Minelle IH, Rolfsen KL, Muir JG, Gibson PR, Veierød MB, Henriksen C, Lundin KEA (2018) Fructan, rather than gluten, induces symptoms in patients with self-reported non-celiac gluten sensitivity. Gastroenterology 154:529-539.

    Article  CAS  PubMed  Google Scholar 

  • Skylas DJ, Mackintosh JA, Cordwell SJ, Basseal DJ, Walsh BJ, Harry J, Blumenthal C, Copeland L, Wrigley CW, Rathmell W (2000) Proteome approach to the characterisation of protein composition in the developing and mature wheat-grain endosperm. J Cereal Sci 32:169–188.

    Article  CAS  Google Scholar 

  • Sofi F, Ghiselli L, Cesari F, Gori AM, Mannini L, Casini A, Vazzana C, Vecchio V, Gensini GF, Abbate R, Benedettelli S (2010) Effects of short-term consumption of bread obtained by an old Italian grain variety on lipid, inflammatory, and haemorheological variables: an intervention study. J Med Food 13: 1–6.

    Article  Google Scholar 

  • Sofi F, Whittaker A, Gori AM, Cesari F, Surrenti E, Abbate R, Gensini GF, Benedettelli S, Casini A (2014) Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial. Br J Nutr 111:1992–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollid LM, Khosla C (2011) Novel therapies for coeliac disease. J Int Med 269:604-613.

    Article  CAS  Google Scholar 

  • Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F (2012). Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455-460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonti R, Green PH (2012) Celiac disease: obesity in celiac disease. Nat Rev Gastroenterol Hepatol 9:247-248.

    Article  PubMed  Google Scholar 

  • Spaenij-Dekking L1, Kooy-Winkelaar Y, van Veelen P, Drijfhout JW, Jonker H, van Soest L, Smulders MJ, Bosch D, Gilissen LJ, Koning F (2005) Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129:797–806.

    Article  CAS  PubMed  Google Scholar 

  • Stein J, Schuppan D (2014) Coeliac disease-new pathophysiological findings and their implications for therapy. Viszeralmedizin 30:156-165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stember RH (2006) Buckwheat allergy. Allergy Asthma Proc 27:393-395.

    Article  PubMed  Google Scholar 

  • Stepniak D, Spaenij-Dekking L, Mitea C, Moester M, de Ru A, Baak-Pablo R, van Veelen P, Edens L, Koning F (2006) Highly efficient gluten degradation with a newly identified prolyl endoprotease: Implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 291:G621–G629.

    Article  CAS  PubMed  Google Scholar 

  • Šuligoj T, Gregorini A, Colomba M, Ellis HJ, Ciclitira PJ (2013) Evaluation of the safety of ancient strains of wheat in coeliac disease reveals heterogeneous small intestinal T cell responses suggestive of coeliac toxicity. Clin Nutr 32:1043-1049.

    Article  CAS  PubMed  Google Scholar 

  • Tallberg A (1981a) Protein and lysine content in high-lysine double-recessives of barley. I. Combinations between mutant 1508 and a Hiproly back-cross. Hereditas 94:253-260.

    Article  CAS  Google Scholar 

  • Tallberg A (1981b) Protein and lysine content in high-lysine double-recessives of barley. II. Combinations between mutant 7 and a Hiproly back-cross. Hereditas 94:261-268.

    Article  CAS  Google Scholar 

  • Tallberg A (1982) Characterization of high-lysine barley genotypes. Hereditas 96:229-245

    Article  Google Scholar 

  • Tatham AS, Shewry PR (2008) Allergens to wheat and related cereals. Clin Exp Allergy 38:1712-1726.

    CAS  PubMed  Google Scholar 

  • Theethira TG, Dennis M, Leffler DA (2014) Nutritional consequences of celiac disease and the gluten-free diet. Expert Rev Gastroenterol Hepatol 8:123-129.

    Article  CAS  PubMed  Google Scholar 

  • Thompson T, Lee AR, Grace T (2010) Gluten contamination of grains, seeds, and flours in the United States: a pilot study. J Am Diet Assoc 110:937-940.

    Article  CAS  PubMed  Google Scholar 

  • Trcka J, Schäd SG, Scheurer S, Conti A, Vieths S, Gross G, Trautmann A (2012) Rice-induced anaphylaxis: IgE-mediated allergy against a 56-kDa glycoprotein. Int Arch Allergy Immunol 158:9-17.

    Article  CAS  PubMed  Google Scholar 

  • Turner AS, Bradburne RP, Fish L, Snape JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40:51-60.

    Article  CAS  Google Scholar 

  • Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, Henderson K, Mannering SI, Gianfrani C, Jewell DP, Hill AV, McCluskey J, Rossjohn J, Anderson RP (2010) Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med 2:41–51.

    Article  CAS  Google Scholar 

  • Uhde M, Ajamian M, Caio G, De Giorgio R, Indart A, Green PH, Verna EC, Volta U, Alaedini A (2016) Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut 65:1930-1937.

    Article  CAS  PubMed  Google Scholar 

  • van den Broeck H, Hongbing C, Lacaze X, Dusautoir J-C, Gilissen L, Smulders M, van der Meer I (2010a) In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Mol Biosyst 6:2206-2213.

    Article  CAS  PubMed  Google Scholar 

  • van den Broeck HC, de Jong HC, Salentijn EMJ, Dekking L, Bosch D, Hamer RJ, Gilissen LJWJ, van der Meer IM, Smulders MJM (2010b) Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor Appl Genet 121:1527-1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Broeck HC, Gilissen LJWJ, Smulders MJM., van der Meer IM, Hamer RJ (2011) Dough quality of bread wheat lacking alpha-gliadins with celiac disease epitopes and addition of celiac-safe avenins to improve dough quality. J Cereal Sci 53:206–216.

    Article  CAS  Google Scholar 

  • van den Broeck HC, van Herpen TW, Schuit C, Salentijn EM, Dekking L, Bosch D, Hamer RJ, Smulders MJ, Gilissen LJ, van der Meer IM (2009) Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biol 9:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Eckert R, Pfannhauser W, Riedl O (1992) Vienna Food Research Institute, Vienna, Austria. Contribution to quality assessment during production of gluten-free food. Ernährung/Nutrition 16:511-512.

    Google Scholar 

  • Vazquez-Roque MI, Camilleri M, Smyrk T, Murray JA, Marietta E, O’Neill J, Carlson P, Lamsam J, Janzow D, Eckert D, Burton D, Zinsmeister AR (2013) A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology 144:903-911.

    Article  CAS  PubMed  Google Scholar 

  • Vincentini O, Borrelli O, Silano M, Gazza L, Pogna N, Luchetti R, De Vincenzi M (2009) T-cell response to different cultivars of farro wheat, Triticum turgidum ssp. dicoccum, in coeliac disease patients. Clin Nutr 28:272–277.

    Article  CAS  PubMed  Google Scholar 

  • Vincentini O, Maialetti F, Gazza L, Silano M, Dessi M, De Vincenzi M, Pogna NE (2007) Environmental factors of celiac disease: Cytotoxicity of hulled wheat species Triticum monococcum, T. turgidum ssp. dicoccum and T. aestivum ssp. spelta. J Gastroenterol Hepatol 22:1816–1822.

    Article  CAS  PubMed  Google Scholar 

  • Vivas S, Ruiz de Morales JM, Ramos F, Suárez-Vilela D (2006) Alemtuzumab for refractory celiac disease in a patient at risk for enteropathy-associated T-cell lymphoma. N Engl J Med 354:2514–2515.

    Article  CAS  PubMed  Google Scholar 

  • Volta U, Caio G, Tovoli F, De Giorgio R (2013) Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness. Cell Mol Immunol 10:383–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waga J, Skoczowski A (2014) Development and characteristics of ω-gliadin-free wheat genotypes. Euphytica 195:105–116.

    Article  CAS  Google Scholar 

  • Waldmann TA, Conlon KC, Stewart DM, Worthy TA, Janik JE, Fleisher TA, Albert PS, Figg WD, Spencer SD, Raffeld M, Decker JR, Goldman CK, Bryant BR, Petrus MN, Creekmore SP, Morris JC (2013) Phase 1 trial of IL-15 trans presentation blockade using humanized Mikbeta1 mAb in patients with T-cell large granular lymphocytic leukemia. Blood 121:476-484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters MJ, Wang Y, Lai N, Baumgart T, Zhao BN, Dairaghi DJ, Bekker P, Ertl LS, Penfold ME, Jaen JC, Keshav S, Wendt E, Pennell A, Ungashe S, Wei Z, Wright JJ, Schall TJ (2010) Characterization of CCX282-B, an orally bioavailable antagonist of the CCR9 chemokine receptor, for treatment of inflammatory bowel disease. J Pharmacol Exp Ther 335:61–69.

    Article  CAS  PubMed  Google Scholar 

  • Watts RE, Siegel M, Khosla C (2006) Structure-activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 49:7493–7501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen S, Wen N, Pang J, Langen G, Brew-Appiah RAT, Mejias JH, Osorio C, Yang M, Gemini R, Moehs CP, Zemetra RS, Kogel K-H, Liu B, Wang X, von Wettstein D, Rustgi S (2012) Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci USA 109:20543-20548.

    Article  PubMed  PubMed Central  Google Scholar 

  • West K (2009) CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Investig Drugs 10:491–504.

    CAS  PubMed  Google Scholar 

  • Wieser H, Koehler P, Folck A, Becker D (2006) Characterization of wheat with strongly reduced α-gliadin content. In: 9th Gluten Workshop, pp. 13-16.

    Google Scholar 

  • Wolf C, Siegel JB, Tinberg C, Camarca A, Gianfrani C, Paski S, Guan R, Montelione G, Baker D, Pultz IS (2015) Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. J Am Chem Soc 137:13106-13113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrigley CW, Bekes F, Bushuk W (2006) Gluten: A balance of gliadin and glutenin. In Wrigley CW, Bekes F, Bushuk W (eds) Gliadin and glutenin: The unique balance of wheat quality. Am Assoc Cereal Chem, St. Paul, MN, pp. 1-28

    Chapter  Google Scholar 

  • Wrigley CW, Bietz JA (1988) Proteins and Amino Acids, In: Pomeranz Y (ed) Wheat Chemistry and Technology, Am Assoc Cereal Chem, St. Paul, MN, pp. 159-275.

    Google Scholar 

  • Xia J, Bergseng E, Fleckenstein B, Siegel M, Kim CY, Khosla C, Sollid LM (2007) Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in coeliac disease. Bioorg Med Chem 15:6565–6573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama S, Perera PY, Waldmann TA, Hiroi T, Perera LP (2013) Tofacitinib, a janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol 33:586-594.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama S, Watanabe N, Sato N, Perera PY, Filkoski L, Tanaka T, Miyasaka M, Waldmann TA, Hiroi T, Perera LP (2009) Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA 106:15849-15854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zevallos VF, Ellis HJ, Suligoj T, Herencia LI, Ciclitira PJ (2012) Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. Am J Clin Nutr 96:337-344.

    Article  CAS  PubMed  Google Scholar 

  • Zevallos VF, Herencia LI, Chang F, Donnelly S, Ellis HJ, Ciclitira PJ (2014) Gastrointestinal Effects of Eating Quinoa (Chenopodium quinoa Willd.) in Celiac Patients. Am J Gastroenterol 109:270-278.

    Article  CAS  PubMed  Google Scholar 

  • Zevallos VF, Raker V, Tenzer S, Jimenez-Calvente C, Ashfaq-Khan M, Rüssel N, Pickert G, Schild H, Steinbrink K, Schuppan D (2017) Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152:1100-1113.

    Article  CAS  PubMed  Google Scholar 

  • Zevallos VF, Raker VK, Maxeiner J, Scholtes P, Steinbrink K, Schuppan D (2018) Dietary wheat amylase trypsin inhibitors exacerbate murine allergic airway inflammation. Eur J Nutr https://doi.org/10.1007/s00394-018-1681-6.

  • Zhao J, de Vera J, Narushima S, Beck EX, Palencia S, Shinkawa P, Kim KA, Liu Y, Levy MD, Berg DJ, Abo A, Funk WD (2007) R-spondin1, a novel intestinotrophic ameliorates experimental colitis in mice. Gastroentrology 132:1331–1343.

    Article  CAS  Google Scholar 

  • Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C, Sodergren E, Dahlstrom J, Lindner T, Sigurdardottir ST, McBride D, Keil T (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121:1210-1218.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK and the work forms part of the Designing Future Wheat strategic programme (BBS/E/C/000I0250). Financial support by NIH grants 1R01 GM080749-01A2, Life Sciences Discovery Fund Grant 3143956-01 and Clemson Faculty Succeeds Grant 15-202-EQUIP-5701-430-1502211 to SR is also gratefully acknowledged. Maastricht University NUTRIM receives grants from the Dutch Topsector AgriFood (TKI 1601P01) and from public private partnerships for the ‘Well on Wheat?’ research consortium addressing the health aspects of wheat consumption and wheat and gluten avoidance (http://www.um-eatwell.nl/wow/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Rustgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rustgi, S., Shewry, P., Brouns, F. (2020). Health Hazards Associated with Wheat and Gluten Consumption in Susceptible Individuals and Status of Research on Dietary Therapies. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat Quality For Improving Processing And Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3_20

Download citation

Publish with us

Policies and ethics