Skip to main content

Control of Cooperative Unmanned Aerial Vehicles: Review of Applications, Challenges, and Algorithms

  • Chapter
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1123))

Abstract

A system of cooperative unmanned aerial vehicles (UAVs) is a group of agents interacting with each other and the surrounding environment to achieve a specific task. In contrast with a single UAV, UAV swarms are expected to benefit efficiency, flexibility, accuracy, robustness, and reliability. However, the provision of external communications potentially exposes them to an additional layer of faults, failures, uncertainties, and cyberattacks and can contribute to the propagation of error from one component to other components in a network. Also, other challenges such as complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion should be addressed adequately. Main applications of cooperative UAVs are border patrol; search and rescue; surveillance; mapping; military. Challenges to be addressed in decision and control in cooperative systems may include the complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion. In this paper, emerging topics in the field of cooperative UAVs control and their associated practical approaches are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. L. Lin, M. Roscheck, M.A. Goodrich, B.S. Morse, Supporting wilderness search and rescue with integrated intelligence: autonomy and information at the right time and the right place. in Association for the Advancement of Artificial Intelligence (2010)

    Google Scholar 

  2. J.R. Riehl, G.E. Collins, J.P. Hespanha, Cooperative search by UAV teams: a model predictive approach using dynamic graphs. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2637–2656 (2011)

    Article  Google Scholar 

  3. J. How, Y. Kuwata, E. King, Flight demonstrations of cooperative control for UAV teams, in AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit (2004), p. 6490

    Google Scholar 

  4. S.-M. Hung, S.N. Givigi, A q-learning approach to flocking with UAVS in a stochastic environment. IEEE Trans. Cybern. 47(1), 186–197 (2017)

    Article  Google Scholar 

  5. R.R. McCune, G.R. Madey, Control of artificial swarms with DDDAS. Proc. Comput. Sci. 29, 1171–1181 (2014)

    Article  Google Scholar 

  6. W. Ren, R.W. Beard, E.M. Atkins, Information consensus in multivehicle cooperative control. IEEE Control Syst. 27(2), 71–82 (2007)

    Article  Google Scholar 

  7. B.D. Anderson, C. Yu, J.M. Hendrickx, et al., Rigid graph control architectures for autonomous formations. IEEE Control Syst. 28(6), 48–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Q. Wang, H. Gao, F. Alsaadi, T. Hayat, An overview of consensus problems in constrained multi-agent coordination. Syst. Sci. Control Eng. Open Access J. 2(1), 275–284 (2014)

    Article  Google Scholar 

  9. K.-K. Oh, M.-C. Park, H.-S. Ahn, A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Zhu, L. Xie, D. Han, X. Meng, R. Teo, A survey on recent progress in control of swarm systems. Sci. China Inf. Sci. 60(7), 070201 (2017)

    Google Scholar 

  11. M. Senanayake, I. Senthooran, J.C. Barca, H. Chung, J. Kamruzzaman, M. Murshed, Search and tracking algorithms for swarms of robots: a survey. Robot. Auton. Syst. 75, 422–434 (2016)

    Article  Google Scholar 

  12. M.A. Goodrich, J.L. Cooper, J.A. Adams, C. Humphrey, R. Zeeman, B.G. Buss, Using a mini-UAV to support wilderness search and rescue: practices for human-robot teaming, in IEEE International Workshop on Safety, Security and Rescue Robotics, 2007. SSRR 2007 (IEEE, Piscataway, 2007), pp. 1–6

    Google Scholar 

  13. J.Q. Cui, S.K. Phang, K.Z. Ang, F. Wang, X. Dong, Y. Ke, S. Lai, K. Li, X. Li, F. Lin, et al., Drones for cooperative search and rescue in post-disaster situation, in IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2015 (IEEE, Piscataway, 2015), pp. 167–174

    Google Scholar 

  14. N. Nigam, I. Kroo, Control and design of multiple unmanned air vehicles for a persistent surveillance task, in 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2008), p. 5913

    Google Scholar 

  15. N. Nigam, S. Bieniawski, I. Kroo, J. Vian, Control of multiple UAVS for persistent surveillance: algorithm and flight test results. IEEE Trans. Control Syst. Technol. 20(5), 1236–1251 (2012)

    Article  Google Scholar 

  16. A. Ahmadzadeh, A. Jadbabaie, V. Kumar, G.J. Pappas, Multi-UAV cooperative surveillance with spatio-temporal specifications, in 45th IEEE Conference on Decision and Control, 2006 (IEEE, Piscataway, 2006), pp. 5293–5298

    Google Scholar 

  17. J.W. Fenwick, P.M. Newman, J.J. Leonard, Cooperative concurrent mapping and localization, in IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2 (IEEE, Piscataway, 2002), pp. 1810–1817

    Google Scholar 

  18. F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, D. Sarazzi, UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 38(1), C22 (2011)

    Google Scholar 

  19. Y. Lin, J. Hyyppa, A. Jaakkola, Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci. Remote Sens. Lett. 8(3), 426–430 (2011)

    Article  Google Scholar 

  20. L. Zongjian, UAV for mapping low altitude photogrammetric survey, in International Archives of Photogrammetry and Remote Sensing, Beijing, China, vol. 37 (2008), pp. 1183–1186

    Google Scholar 

  21. M.J. Mears, Cooperative electronic attack using unmanned air vehicles, in Proceedings of the 2005 American Control Conference, 2005 (IEEE, Piscataway, 2005), pp. 3339–3347

    Book  Google Scholar 

  22. Z. Junwei, Z. Jianjun, Target distributing of multi-UAVs cooperate attack and defend based on DPSO algorithm, in Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014, vol. 2 (IEEE, Piscataway, 2014), pp. 396–400

    Google Scholar 

  23. D.A. Paley, F. Zhang, N.E. Leonard, Cooperative control for ocean sampling: the glider coordinated control system. IEEE Trans. Control Syst. Technol. 16(4), 735–744 (2008)

    Article  Google Scholar 

  24. J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre, A. Khan, V. Vukadinovic, C. Bettstetter, H. Hellwagner, B. Rinner, An autonomous multi-UAV system for search and rescue, in Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use (ACM, New York, 2015), pp. 33–38

    Google Scholar 

  25. S. Waharte, N. Trigoni, Supporting search and rescue operations with UAVS, in International Conference on Emerging Security Technologies (EST), 2010 (IEEE, Piscataway, 2010), pp. 142–147

    Google Scholar 

  26. A. Viguria, I. Maza, A. Ollero, Distributed service-based cooperation in aerial/ground robot teams applied to fire detection and extinguishing missions. Adv. Robot. 24(1–2), 1–23 (2010)

    Article  Google Scholar 

  27. I. Maza, F. Caballero, J. Capitan, J. Martinez-de Dios, A. Ollero, Firemen monitoring with multiple UAVs for search and rescue missions, in IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), 2010 (IEEE, Piscataway, 2010), pp. 1–6

    Google Scholar 

  28. R.W. Beard, T.W. McLain, D.B. Nelson, D. Kingston, D. Johanson, Decentralized cooperative aerial surveillance using fixed-wing miniature UAVS. Proc. IEEE 94(7), 1306–1324 (2006)

    Article  Google Scholar 

  29. N. Nigam, I. Kroo, Persistent surveillance using multiple unmanned air vehicles, in IEEE Aerospace Conference, 2008 (IEEE, Piscataway, 2008), pp. 1–14

    Google Scholar 

  30. D.A. Paley, C. Peterson, Stabilization of collective motion in a time-invariant flowfield. J. Guid. Control. Dyn. 32(3), 771–779 (2009)

    Article  Google Scholar 

  31. A.H. Goktogan, E. Nettleton, M. Ridley, S. Sukkarieh, Real time multi-UAV simulator, in IEEE International Conference on Robotics and Automation, 2003 Proceedings. ICRA’03, vol. 2 (IEEE, Piscataway, 2003), pp. 2720–2726

    Google Scholar 

  32. S.B. Williams, G. Dissanayake, H. Durrant-Whyte, Towards multi-vehicle simultaneous localisation and mapping, in IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 3 (IEEE, Piscataway, 2002), pp. 2743–2748

    Google Scholar 

  33. M. Bryson, S. Sukkarieh, Co-operative localisation and mapping for multiple UAVs in unknown environments, in IEEE Aerospace Conference, 2007 (IEEE, Piscataway, 2007), pp. 1–12

    Google Scholar 

  34. J. Han, Y. Xu, L. Di, Y. Chen, Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J. Intell. Robot. Syst. 70, 401–410 (2013)

    Article  Google Scholar 

  35. M.A. Kovacina, D. Palmer, G. Yang, R. Vaidyanathan, Multi-agent control algorithms for chemical cloud detection and mapping using unmanned air vehicles, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 3, pp. 2782–2788 (IEEE, Piscataway, 2002)

    Google Scholar 

  36. I.-S. Jeon, J.-I. Lee, M.-J. Tahk, Homing guidance law for cooperative attack of multiple missiles. J. Guid. Control. Dyn. 33(1), 275–280 (2010)

    Article  Google Scholar 

  37. M. Sadeghi, A. Abaspour, S.H. Sadati, A novel integrated guidance and control system design in formation flight. J. Aerosp. Technol. Manag. 7(4), 432–442 (2015)

    Article  Google Scholar 

  38. E. Lavretsky, F/a-18 autonomous formation flight control system design, in AIAA Guidance, Navigation, and Control Conference and Exhibit (2002), p. 4757

    Google Scholar 

  39. L. Liu, D. McLernon, M. Ghogho, W. Hu, J. Huang, Ballistic missile detection via micro-Doppler frequency estimation from radar return. Digital Signal Process. 22(1), 87–95 (2012)

    Article  MathSciNet  Google Scholar 

  40. M.L. Stone, G.P. Banner, Radars for the detection and tracking of ballistic missiles, satellites, and planets. Lincoln Lab. J. 12(2), 217–244 (2000)

    Google Scholar 

  41. C. Schwartz, T. Bryant, J. Cosgrove, G. Morse, J. Noonan, A radar for unmanned air vehicles. Lincoln Lab. J. 3(1), 119–143 (1990)

    Google Scholar 

  42. Y. Wang, S. Dong, L. Ou, L. Liu, Cooperative control of multi-missile systems. IET Control Theory Appl. 9(3), 441–446 (2014)

    Article  MathSciNet  Google Scholar 

  43. A. Ahmadzadeh, G. Buchman, P. Cheng, A. Jadbabaie, J. Keller, V. Kumar, G. Pappas, Cooperative control of UAVS for search and coverage, in Proceedings of the AUVSI Conference on Unmanned Systems, vol. 2 (2006)

    Google Scholar 

  44. R.M. Murray, Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control. 129(5), 571–583 (2007)

    Article  Google Scholar 

  45. J. Kim, J.P. Hespanha, Cooperative radar jamming for groups of unmanned air vehicles, in 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 1 (IEEE, Piscataway, 2004), pp. 632–637

    Google Scholar 

  46. J.-I. Lee, I.-S. Jeon, M.-J. Tahk, Guidance law using augmented trajectory-reshaping command for salvo attack of multiple missiles, in UKACC International Control Conference (2006), pp. 766–771

    Google Scholar 

  47. I.-S. Jeon, J.-I. Lee, M.-J. Tahk, Impact-time-control guidance law for anti-ship missiles. IEEE Trans. Control Syst. Technol. 14(2), 260–266 (2006)

    Article  Google Scholar 

  48. L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutorials 18(2), 1123–1152 (2016)

    Article  Google Scholar 

  49. A. Ryan, M. Zennaro, A. Howell, R. Sengupta, J.K. Hedrick, An overview of emerging results in cooperative UAV control, in 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 1 (IEEE, Piscataway, 2004), pp. 602–607

    Google Scholar 

  50. H. Oh, A.R. Shirazi, C. Sun, Y. Jin, Bio-inspired self-organising multi-robot pattern formation: a review. Robot. Auton. Syst. 91, 83–100 (2017)

    Article  Google Scholar 

  51. F.L. Lewis, H. Zhang, K. Hengster-Movric, A. Das, Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches (Springer, Berlin, 2013)

    MATH  Google Scholar 

  52. S. Martini, D. Di Baccio, F.A. Romero, A.V. Jiménez, L. Pallottino, G. Dini, A. Ollero, Distributed motion misbehavior detection in teams of heterogeneous aerial robots. Robot. Auton. Syst. 74, 30–39 (2015)

    Article  Google Scholar 

  53. B. Khaldi, F. Harrou, F. Cherif, Y. Sun, Monitoring a robot swarm using a data-driven fault detection approach. Robot. Auton. Syst. 97, 193–203 (2017)

    Article  Google Scholar 

  54. A. Abbaspour, M. Sanchez, A. Sargolzaei, K. Yen, N. Sornkhampan, Adaptive neural network based fault detection design for unmanned quadrotor under faults and cyber attacks, in 25th International Conference on Systems Engineering (ICSEng) (2017)

    Google Scholar 

  55. A. Abbaspour, K.K. Yen, S. Noei, A. Sargolzaei, Detection of fault data injection attack on UAV using adaptive neural network. Proc. Comput. Sci. 95, 193–200 (2016)

    Article  Google Scholar 

  56. A. Sargolzaei, K.K. Yen, M.N. Abdelghani, Preventing time-delay switch attack on load frequency control in distributed power systems. IEEE Trans. Smart Grid 7(2), 1176–1185 (2015)

    Google Scholar 

  57. A. Sargolzaei, K. Yen, M.N. Abdelghani, Delayed inputs attack on load frequency control in smart grid, in Innovative Smart Grid Technologies 2014 (IEEE, Piscataway, 2014), pp. 1–5

    Google Scholar 

  58. A. Sargolzaei, K.K. Yen, M.N. Abdelghani, S. Sargolzaei, B. Carbunar, Resilient design of networked control systems under time delay switch attacks, application in smart grid. IEEE Access 5, 15,901–15,912 (2017)

    Article  Google Scholar 

  59. A. Sargolzaei, A. Abbaspour, M.A. Al Faruque, A.S. Eddin, K. Yen, Security challenges of networked control systems, in Sustainable Interdependent Networks (Springer, Berlin, 2018), pp. 77–95

    Book  Google Scholar 

  60. F. Giulietti, M. Innocenti, M. Napolitano, L. Pollini, Dynamic and control issues of formation flight. Aerosp. Sci. Technol. 9(1), 65–71 (2005)

    Article  MATH  Google Scholar 

  61. R.L. Pereira, K.H. Kienitz, Tight formation flight control based on h approach, in 24th Mediterranean Conference on Control and Automation (MED), 2016 (IEEE, Piscataway, 2016), pp. 268–274

    Google Scholar 

  62. R.J. Ray, B.R. Cobleigh, M.J. Vachon, C. St. John, Flight test techniques used to evaluate performance benefits during formation flight, in NASA Conference Publication, NASA (1998, 2002)

    Google Scholar 

  63. J. Pahle, D. Berger, M.W. Venti, J.J. Faber, C. Duggan, K. Cardinal, A preliminary flight investigation of formation flight for drag reduction on the c-17 aircraft (2012)

    Google Scholar 

  64. A. Abbaspour, K.K. Yen, P. Forouzannezhad, A. Sargolzaei, A neural adaptive approach for active fault-tolerant control design in UAV. IEEE Trans. Syst. Man Cybern. Syst. Hum. 99, 1–11 (2018)

    Google Scholar 

  65. A. Abbaspour, P. Aboutalebi, K.K. Yen, A. Sargolzaei, Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV. ISA Trans. 67, 317–329 (2017)

    Article  Google Scholar 

  66. V. Borkar, P. Varaiya, Asymptotic agreement in distributed estimation. IEEE Trans. Autom. Control 27(3), 650–655 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Tsitsiklis, D. Bertsekas, M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  69. R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  MathSciNet  Google Scholar 

  71. G. Xie, L. Wang, Consensus control for a class of networks of dynamic agents. Int. J. Robust Nonlinear Control 17(10–11), 941–959 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. F. Xiao, L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Trans. Autom. Control 53(8), 1804–1816 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. X. Chen, F. Hao, Event-triggered average consensus control for discrete-time multi-agent systems. IET Control Theory Appl. 6(16), 2493–2498 (2012)

    Article  MathSciNet  Google Scholar 

  74. H. Zhang, H. Jiang, Y. Luo, G. Xiao, Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Trans. Ind. Electr. 64(5), 4091–4100 (2017)

    Article  Google Scholar 

  75. D. Ding, Z. Wang, B. Shen, G. Wei, Event-triggered consensus control for discrete-time stochastic multi-agent systems: the input-to-state stability in probability. Automatica 62, 284–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. J. Jin, N. Gans, Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem. Robot. Auton. Syst. 95, 25–36 (2017)

    Article  Google Scholar 

  77. M. Jamshidi, A.J. Betancourt, J. Gomez, Cyber-physical control of unmanned aerial vehicles. Sci. Iran. 18(3), 663–668 (2011)

    Article  Google Scholar 

  78. H. Rezaee, F. Abdollahi, Average consensus over high-order multiagent systems. IEEE Trans. Autom. Control 60(11), 3047–3052 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  79. W. Li, Unified generic geometric-decompositions for consensus or flocking systems of cooperative agents and fast recalculations of decomposed subsystems under topology-adjustments. IEEE Trans. Cybern. 46(6), 1463–1470 (2016)

    Article  Google Scholar 

  80. H. Liang, H. Zhang, Z. Wang, Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems. ISA Trans. 59, 72–78 (2015)

    Article  Google Scholar 

  81. Y. Xia, X. Na, Z. Sun, J. Chen, Formation control and collision avoidance for multi-agent systems based on position estimation. ISA Trans. 61, 287–296 (2016)

    Article  Google Scholar 

  82. T. Han, Z.-H. Guan, M. Chi, B. Hu, T. Li, X.-H. Zhang, Multi-formation control of nonlinear leader-following multi-agent systems. ISA Trans. 69, 140–147 (2017)

    Article  Google Scholar 

  83. G.-S. Han, Z.-H. Guan, X.-M. Cheng, Y. Wu, F. Liu, Multiconsensus of second order multiagent systems with directed topologies. Int. J. Control, Autom. Syst. 11(6), 1122–1127 (2013)

    Article  Google Scholar 

  84. S. Shoja, M. Baradarannia, F. Hashemzadeh, M. Badamchizadeh, P. Bagheri, Surrounding control of nonlinear multi-agent systems with non-identical agents. ISA Trans. 70, 219 (2017)

    Article  Google Scholar 

  85. H. Hou, Q. Zhang, Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control. ISA Trans. 65, 96–108 (2016)

    Article  Google Scholar 

  86. M. Taheri, F. Sheikholeslam, M. Najafi, M. Zekri, Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics. ISA Trans. 69, 89–101 (2017)

    Article  Google Scholar 

  87. H. Zhang, F.L. Lewis, Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48(7), 1432–1439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. S. El-Ferik, A. Qureshi, F.L. Lewis, Neuro-adaptive cooperative tracking control of unknown higher-order affine nonlinear systems. Automatica 50(3), 798–808 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  89. Z. Gallehdari, N. Meskin, K. Khorasani, A distributed control reconfiguration and accommodation for consensus achievement of multiagent systems subject to actuator faults. IEEE Trans. Control Syst. Technol. 24(6), 2031–2047 (2016)

    Article  Google Scholar 

  90. Z. Gallehdari, N. Meskin, K. Khorasani, Distributed reconfigurable control strategies for switching topology networked multi-agent systems. ISA Trans. 71, 51–67 (2017)

    Article  MATH  Google Scholar 

  91. Y. Hua, X. Dong, Q. Li, Z. Ren, Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures. ISA Trans. 71, 40–50 (2017)

    Article  Google Scholar 

  92. R. Wang, X. Dong, Q. Li, Z. Ren, Distributed adaptive formation control for linear swarm systems with time-varying formation and switching topologies. IEEE Access 4, 8995–9004 (2016)

    Article  Google Scholar 

  93. W. Wang, C. Wen, J. Huang, Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances. Automatica 77, 133–142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  94. C.W. Reynolds, Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  95. N. Moshtagh, A. Jadbabaie, Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  96. R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  97. O. Saif, I. Fantoni, A. Zavala-Rio, Flocking of multiple unmanned aerial vehicles by LQR control, in International Conference on Unmanned Aircraft Systems (ICUAS), 2014 (IEEE, Piscataway, 2014), pp. 222–228

    Book  Google Scholar 

  98. S.H. Semnani, O.A. Basir, Semi-flocking algorithm for motion control of mobile sensors in large-scale surveillance systems. IEEE Trans. Cybern. 45(1), 129–137 (2015)

    Article  Google Scholar 

  99. A. Chapman, M. Mesbahi, UAV flocking with wind gusts: adaptive topology and model reduction, in American Control Conference (ACC), 2011 (IEEE, Piscataway, 2011), pp. 1045–1050

    Google Scholar 

  100. H.G. Tanner, A. Jadbabaie, G.J. Pappas, Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  101. S.A. Quintero, G.E. Collins, J.P. Hespanha, Flocking with fixed-wing UAVS for distributed sensing: a stochastic optimal control approach, in American Control Conference (ACC), 2013 (IEEE, Piscataway, 2013), pp. 2025–2031

    Google Scholar 

  102. S. Martin, A. Girard, A. Fazeli, A. Jadbabaie, Multiagent flocking under general communication rule. IEEE Trans. Control Netw. Syst. 1(2), 155–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  103. W. Naeem, R. Sutton, S. Ahmad, R. Burns, A review of guidance laws applicable to unmanned underwater vehicles. J. Navig. 56(1), 15–29 (2003)

    Article  Google Scholar 

  104. C.-F. Lin, Modern Navigation, Guidance, and Control Processing, vol. 2 (Prentice Hall, Englewood Cliffs, 1991)

    Google Scholar 

  105. N.A. Shneydor, Missile Guidance and Pursuit: Kinematics, Dynamics and Control (Elsevier, Amsterdam, 1998)

    Book  Google Scholar 

  106. T. Yamasaki, K. Enomoto, H. Takano, Y. Baba, S. Balakrishnan, Advanced pure pursuit guidance via sliding mode approach for chase UAV, in Proceedings of AIAA Guidance, Navigation and Control Conference, AIAA, vol. 6298 (2009), p. 2009

    Google Scholar 

  107. Y. Gu, B. Seanor, G. Campa, M.R. Napolitano, L. Rowe, S. Gururajan, S. Wan, Design and flight testing evaluation of formation control laws. IEEE Trans. Control Syst. Technol. 14(6), 1105–1112 (2006)

    Article  Google Scholar 

  108. S. Zhu, D. Wang, C.B. Low, Cooperative control of multiple UAVS for moving source seeking. J. Intell. Robot. Syst. 74(1–2), 333–346 (2014)

    Article  Google Scholar 

  109. S.U. Ali, R. Samar, M.Z. Shah, A.I. Bhatti, K. Munawar, U.M. Al-Sggaf, Lateral guidance and control of UAVs using second-order sliding modes. Aerosp. Sci. Technol. 49, 88–100 (2016)

    Article  Google Scholar 

  110. X. Wang, V. Yadav, S. Balakrishnan, Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans. Control Syst. Technol. 15(4), 672–679 (2007)

    Article  Google Scholar 

  111. E. Børhaug, A. Pavlov, E. Panteley, K.Y. Pettersen, Straight line path following for formations of underactuated marine surface vessels. IEEE Trans. Control Syst. Technol. 19(3), 493–506 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Kang Yen for his guidance, contribution, and effort toward this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Sargolzaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sargolzaei, A., Abbaspour, A., Crane, C.D. (2020). Control of Cooperative Unmanned Aerial Vehicles: Review of Applications, Challenges, and Algorithms. In: Amini, M. (eds) Optimization, Learning, and Control for Interdependent Complex Networks. Advances in Intelligent Systems and Computing, vol 1123. Springer, Cham. https://doi.org/10.1007/978-3-030-34094-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34094-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34093-3

  • Online ISBN: 978-3-030-34094-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics