Skip to main content

Interaction Between Copperoxide Nanoparticles and Plants: Uptake, Accumulation and Phytotoxicity

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 41

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 41))

Abstract

A natural question arose when scientists and engineers began formulating and using nanoparticles (NPs): “Why are they so interesting? Why are studies of these extremely small entities are so fascinating, and why are they so challenging to handle as well as to synthesize?” The unique property possessed by all nanoparticles is where the answer lies. The term nano is adapted from the Greek word ‘dwarf’ and denotes 10−9 when used as a prefix. The use of nanoparticles (NPs) extends their potential into agricultural soils and indeed the formulations of NPs may be developed to improve nutrient and quality of crops. The rapid development of synthesized nanoparticles combined with their potential risks to public health and the environment has raised considerable concerns. A significant aspect regarding risk assessment of NPs is understanding the interaction between plants and NPs. Plants, which are fundamental components of all ecosystems, play an important role in fate and transport of NPs in the environment through uptake and bioaccumulation. The degree of accumulation of nanoparticles by plants depends on physicochemical characteristics such as shape, size, agglomeration state, chemical composition and others. Since, copper is an essential micronutrient for plants and play important role in the activation of several enzymes such as cytochrome c oxidase, superoxide dismutase, ascorbate oxidase, amine oxidase etc. and as electron transport carriers in plants i.e. plastocyanin (Sekine R, Marzouk ER, Khaksar M, Scheckel KG, Stegemeier JP, Lowry GV, Donner E, Lombi E, J Environ Qual, 46(6):1198–1205, 2017). This chapter discusses the nature of copperoxide nanoparticles (CuO NPs), their uptake and translocation mechanisms, and their toxic effects on different plant species at both physiological and cellular levels. This chapter also addresses tolerance mechanisms generated by plants and a critical assessment of the necessity for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Hameed M, Al-Samarrai (2012) Nanoparticles as alternative to pesticides in management plant diseases-a review. Int J Sci Res Publ 2(4):1–4

    Google Scholar 

  • Ahmad Z, Vargas-Reus MA, Bakhshi R, Ryan F, Ren GG, Oktar F, Allaker RP (2012) Antimicrobial properties of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental applications. Methods Enzymol 509:87–99

    Article  CAS  PubMed  Google Scholar 

  • Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59:2–20

    Article  CAS  Google Scholar 

  • Anjum NA, Singh HP, Khan MI, Masood A, Per TS, Negi A, Batish DR, Khan NA, Duarte AC, Pereira E, Ahmad I (2015) Too much is bad-an appraisal of phytotoxic¬ity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res 22:3361–3382

    Article  CAS  Google Scholar 

  • Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of Copper Oxide nanoparticles with plants: uptake, accumulation, and toxicity. nanomaterials in plants, algae, and microorganisms. Elsevier. https://doi.org/10.1016/B978-0-12-811487-2.00013-X

    Chapter  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook R, Jaruga DP, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Ben-Sasson M, Zodrow KR, Genggeng Q, Kang Y, Giannelis EP, Elimelech M (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants, vol 40. American Society of Plant Physiologists, Rockville, p 1367

    Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2010) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    Article  CAS  PubMed Central  Google Scholar 

  • Chaoui A, Jarrar B, El Ferjani E (2004) Effect of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J Plant Physiol 161(11):1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Chibber S, Ansari SA, Satar R (2013) New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. J Nanopart Res 15:1–13

    Article  CAS  Google Scholar 

  • Cioffi N, Ditaranto N, Torsi L, Picca RA, Giglio ED, Zambonin PG (2005) Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal Bioanal Chem 382:1912

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Palmgren MG, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumualtion. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256

    Article  CAS  Google Scholar 

  • Dankovich TA, Smith JA (2014) Incorporation of copper nanoparticles into paper for point-of use water purification. Water Res 63:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng F, Wang S, Xin H (2016) Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bull Environ Contam Toxicol 97:702–708

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    Article  CAS  PubMed  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  PubMed  Google Scholar 

  • Du W, Tan W, Yin Y, Ji R, Peralta-Videa JR, Guo H, Gardea-Torresdey JL (2018) Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Sci Tot Environ 618:306–312

    Article  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiolgea Plantarum 134:151–160

    Article  CAS  Google Scholar 

  • Evans P, Matsunaga H, Kiguchi M (2008) Large-scale application of nanotechnology for wood protection. Nat Nanotechnol 3:577

    Article  CAS  PubMed  Google Scholar 

  • Faheem I, Sammia S, Shakeel AK et al (2016) Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. Trop J Pharm Res 16:743–753

    Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430

    Article  CAS  PubMed  Google Scholar 

  • Fleischer MA, Neill O, Ehwald R (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II. Plant Physiol 121:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, Montes M, De la Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92(3):229–235

    Article  CAS  PubMed  Google Scholar 

  • Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc 97:1140–1144

    Article  CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  CAS  Google Scholar 

  • Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Int J Phytoremediation 1:429–442

    Article  CAS  Google Scholar 

  • Honary S, Barabadi H, Fathabad EG, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using penicilliumaurantiogriseum, penicilliumcitrinum and penicilliumwakasmanii. Dig J Nanomater Biostruct 7:999–1005

    Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Processes and Impacts 17:177–185

    Article  CAS  Google Scholar 

  • Hosseini – Koupaei M, Shareghi B, Saboury AA, Davar F, Sirotkin VA, Hosseini-Koupaei MH, Enteshari Z (2019) Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. Int J Biol Macromol 122:732–744

    Article  PubMed  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nano ecotoxicology. Toxicology 269:105–119

    Article  CAS  PubMed  Google Scholar 

  • Kalska-Szostko B (2011) Electrochemical methods in nanomaterials preparation. Recent Trend Electrochem Sci Technol. https://doi.org/10.5772/33662

    Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233–240

    Article  CAS  Google Scholar 

  • Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN et al (2017) Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40

    Article  Google Scholar 

  • Knox JP (1995) The extra cellular-matrix in higher-plants. 4. Developmentally-regulated proteoglycans and glycoproteins of the plant-cell surface. FASEB J 9:1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Krumov N, Nochta IP, Oder SV, Gotcheva A, Posten AC (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32(7):1026–1035

    Article  CAS  Google Scholar 

  • Kulkarni V, Kulkarni P (2013) Green synthesis of copper nanoparticles using Ocimum Sanctum leaf extract. Int J Chem Stud 1(3):1–4

    Google Scholar 

  • Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol. https://doi.org/10.1155/2014/510246

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al (2010) Uptake and distribution of ultrasmallanatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. Eur Mol Biol Org J 22:2623–2633

    Article  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticumaestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Lee G, Jang NR, Yun JM, Song JY, Kim BS (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374

    CAS  Google Scholar 

  • Lidon FC, Henriques FS (1998) Role of rice shoot vacuoles in copper toxicity regulation. Environ Exp Bot 39:197–202

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Long D, Wu G, Chen S (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Rad Phys Chem 76:1126–1131

    Article  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59

    Article  CAS  Google Scholar 

  • Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337

    Google Scholar 

  • Majumder DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380–4389

    Google Scholar 

  • Marcia R, Salvadori LF, Lepre AR, Oller do Nascimento CA (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrealixiiisolated from the metal mine in the Brazilian Amazon region. PLoS One 8(11):1–8

    Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. Emerging Technologies and Management of Crop Stress Tolerance 1:159–180

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moon YS, Park ES, Kim TO, Lee HS, Lee SE (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Pharmacol 38:922–931

    Article  CAS  PubMed  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophile. Toxicology 269:182–189

    Article  CAS  PubMed  Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Dasmeh HR, Sajadi SM (2018) Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. J Alloys Compd 763:1024–1034

    Article  CAS  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa planch. Russ J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Nikhil J, Zhong LW, Tapan KS, Tarasankar P (2000) Seed mediated growth method to prepare cubic copper nanoparticles. Curr Sci 79:1367

    Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  CAS  PubMed  Google Scholar 

  • Panigrah S, Kundu S, Ghosh SK, Nath S, Praharaj S, Soumen B, Pal T (2006) Cysteine functionalized copper organosol: synthesis, characterization and catalytic application. Polyhydron 25:1263

    Article  CAS  Google Scholar 

  • Pelletier DA, Suresh AK, Holton GA et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonasreinhardtii. Chemosphere 87:1388–1394

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382

    Article  CAS  PubMed  Google Scholar 

  • Rafique M, Shaikh AJ, Rasheed R, Tahir MB, Bakhat HF, Rafique MS, Rabbani F (2017) A review on synthesis, characterization and applications of copper nanoparticles using green method. Nanotechnology 12(04):1750043

    CAS  Google Scholar 

  • Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H (2009) Synthesis of copper oxide nanoparticles by using Phormidium cyanobacterium. Indones J Chem 9:355–360

    Article  Google Scholar 

  • Rajput VD, Chen Y, Ayup M (2015) Effects of high salinity on physiological and anatomical indices in the early stages of Populuseuphratica growth. Russ J Plant Physiol 62:229–236

    Article  CAS  Google Scholar 

  • Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K (2018) Toxicity of copper oxide nanoparticles on spring barley (Hordeumsativum distichum). Sci Total Environ 645:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Ramesh AV, Devi SR, Botsa SM, Basavaiah K (2018) Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. J Asian Ceramic Soc 6:145–155

    Article  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahayaraj K, Rajesh S (2011) Bionanoparticles: synthesis and antimicrobial applications. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Research Center, Badajoz, pp 228–244

    Google Scholar 

  • Sekine R, Marzouk ER, Khaksar M, Scheckel KG, Stegemeier JP, Lowry GV, Donner E, Lombi E (2017) Aging of dissolved copper and copper-based nanoparticles in five different soils: short-term kinetics vs. long-term fate. J Environ Qual 46(6):1198–1205. https://doi.org/10.2134/jeq2016.12.0485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shams M, Yildirim E, Agar G, Ercisli S, Dursun A, Ekinci M, Kul R (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Botanicae Horti Agrobotanici 46(1):167–172

    Article  CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  PubMed  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M et al (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol 97:548–553

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252(5):1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Sundaramurthy N, Parthiban C (2015) Biosynthesis of copper oxide nanoparticles using pyruspyrifolia leaf extract and evolve the catalytic activity. Int Res J Eng Technol 2:332–338

    Google Scholar 

  • Tanori J, Pileni MP (1997) Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 13(4):639–646

    Article  CAS  Google Scholar 

  • Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stress induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30(2):719–725

    Article  CAS  PubMed  Google Scholar 

  • Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Nanotechnology and plant sciences. Springer, Cham, pp 37–53

    Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Article  CAS  PubMed  Google Scholar 

  • Umer S, Naveed S, Ramzan N, Rafique MS (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Nanotechnology. https://doi.org/10.1142/S1793292012300058

    Article  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Valant J, Drobne D, Novak S (2012) Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. Chemosphere 87(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Vellora V, Padil T, Cernik M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889–898

    Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd21 and Zn21 by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegradation 60:96–102

    Article  CAS  Google Scholar 

  • Vymazal J, Brezinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmitesaustralis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu H, Zhang Y, Xin H (2015) The effect of CuO nanoparticles on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34:554–561

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parentprogeny transfer, and gene expression. Environ Sci Technol 50:6008–6016

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastomamalabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413

    Article  CAS  PubMed  Google Scholar 

  • White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N, O’Brien S (2006) Complete CO oxidation over CuO nanoparticles supported on silica gel. Nano Lett 6:2095–2098

    Article  CAS  PubMed  Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) The uptake of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171

    Article  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Sindhe MA et al (2013) Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol Biomol Spectrosc 110:108–115

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    Article  CAS  Google Scholar 

  • Yue L, Zhao J, Yu X, Lv K, Wang Z, Xing B (2018) Interaction of CuO nanoparticles with duckweed (Lemna minor. L): uptake, distribution and ROS production sites. Environ Pollut. https://doi.org/10.1016/j.envpol.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  • Yurderi M, Bulut A, Ertas İE, Zahmakiran M, Kaya M (2015) Supported copper–copper oxide nanoparticles as active, stable and low-cost catalyst in the methanolysis of ammonia–borane for chemical hydrogen storage. Appl Catal B Environ 165:169–175

    Article  CAS  Google Scholar 

  • Zafar MS, Khurshid Z, Najeeb S, Zohaib S, Rehman IU (2017) Therapeutic applications of nanotechnology in dentistry. In: Andronescu E, Grumezescu AM (eds) Nanostructures for Oral Medicine. Elsevier

    Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Uptake and accumulation of CuO nanoparticles and CdS/ZnSquantum dot nanoparticles by Schoenoplectus tabernaemontaniin hydroponic mesocosms. Ecol Eng 70:114–123

    Article  Google Scholar 

  • Zuverza-Menan N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci: Processes Impacts 17:1783–1793

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatima, A., Singh, S., Prasad, S.M. (2020). Interaction Between Copperoxide Nanoparticles and Plants: Uptake, Accumulation and Phytotoxicity. In: Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q. (eds) Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-33996-8_8

Download citation

Publish with us

Policies and ethics