Skip to main content

Impact of Silver Nanoparticles on Plant Physiology: A Critical Review

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 41))

Abstract

Nanotechnology is a rapidly growing field of science and technology that focuses on the production and utilization of materials measuring <100 nm in at least one dimension. The unique physicochemical properties of nanoparticles are a result of their high surface area and high reactivity, which renders them beneficial in biotechnology industries and in agriculture. In recent years, researchers have focused on the beneficial effects of silver nanoparticles (Ag-NPs) on plant growth and development. Ag-NPs, when applied at low concentrations, enhance shoot and root growth of many species. Also, Ag-NPs enhance the activities of antioxidant enzymes which limit production of reactive oxygen species in plant cells. Lower doses of Ag-NPs are also beneficial in enhancing chlorophyll production as well as enhancing chlorophyll florescence parameters. This review highlights the current understanding as well as the future possibilities of Ag-NP research in plant systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177

    Article  CAS  Google Scholar 

  • Al-Huqail AA, Hatata MM, Al-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Almutairi ZM (2016) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int J Agric Biol 18(2):449–457

    Article  CAS  Google Scholar 

  • Almutairi ZM, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. J Adv Agric 4(1):283–288

    Google Scholar 

  • Cvjetko P, Zovko M, Štefanić PP, Biba R, Tkalec M, Domijan AM, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res 25(6):5590–5602

    Article  CAS  Google Scholar 

  • Darvishzadeh F (2015) Effects of silver nanoparticles on salinity tolerance in basil plant (Ocimum basilicum L.) during germination in vitro. New Cell Mol Biotechnol J 5(20):63–70

    Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208

    Article  CAS  Google Scholar 

  • Ekhtiyari R, Moraghebi F (2011) The study of the effects of nano silver technology on salinity tolerance of cumin seed (Cuminum cyminum L.). Plant Ecosyst 7(25):99–107

    Google Scholar 

  • Ekhtiyari R, Mohebbi H, Mansouri M (2011) The study of the effects of nano silver technology on salinity tolerance of (Foeniculum vulgare mill.). Plant Ecosyst 7(27):55–62

    Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:1–16

    Article  CAS  Google Scholar 

  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Ma X (2012) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337

    Article  PubMed  CAS  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen J, Wang Q, Fotis C, Sparer A, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4(2):301–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghavam M (2018) Effect of silver nanoparticles on seed germination and seedling growth in Thymus vulgaris L. and Thymus daenensis Celak under salinity stress. J Rangeland Sci 8(1):93–100

    Google Scholar 

  • Hojjat SS (2019) Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. J Environ Soil Sci 2(2):186–191

    Google Scholar 

  • Hojjat SS, Hojjat H (2015) Effect of nano silver on seed germination and seedling growth in fenugreek seed. Int J Food Eng 1(2):106–110

    Google Scholar 

  • Hojjat SS, Kamyab M (2017) The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russ Agric Sci 43(1):61–65

    Article  Google Scholar 

  • Homaee MB, Ehsanpour AA (2016) Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro. Hortic Environ Biotechnol 57(6):544–553

    Article  CAS  Google Scholar 

  • Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F (2019) Effect of silver nanoparticles on growth of wheat under heat stress. Iranian J Sci Technol Trans A Sci 43(2):387–395

    Article  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25(3):443–447

    Article  CAS  PubMed  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70

    Article  CAS  Google Scholar 

  • Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11(5):699–709

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Tang H, Deng Z, Liu Y, Chen X, Wang H (2018) Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens. Ecotoxicol Environ Saf 164:739–748

    Article  CAS  PubMed  Google Scholar 

  • Mehrian SK, Heidari R, Rahmani F (2015) Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian J Plant Physiol 20(3):257–263

    Article  CAS  Google Scholar 

  • Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):254

    PubMed  PubMed Central  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AKS, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63(12):1736–1747

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteome 122:100–118

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113

    Article  CAS  PubMed  Google Scholar 

  • Olchowik J, Bzdyk R, Studnicki M, Bederska-Błaszczyk M, Urban A, Aleksandrowicz-Trzcińska M (2017) The effect of silver and copper nanoparticles on the condition of english oak (Quercus robur L.) seedlings in a container nursery experiment. Forests 8(9):310

    Article  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Pandey C, Khan E, Mishra A, Sardar M, Gupta M (2014) Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L.(Indian mustard) plant. Adv Sci Lett 20(7–8):1673–1676

    Article  Google Scholar 

  • Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed (De Gruyter Open) 6(3):117–129

    Article  CAS  Google Scholar 

  • Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci 26(3):693–701

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956

    Article  CAS  Google Scholar 

  • Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38(2):58

    Article  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6(1):517–522

    Google Scholar 

  • Salama HM (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int J Biotechnol Res 3(10):190–197

    Google Scholar 

  • Savithramma N, Rao ML, Rukmini K, Devi PS (2011) Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J ChemTech Res 3(3):1394–1402

    CAS  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2(1):2

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Colbeck I (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85(2):245–257

    Article  CAS  PubMed  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    Article  CAS  PubMed  Google Scholar 

  • Tomacheski D, Pittol M, Simões DN, Ribeiro VF, Santana RMC (2017) Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms. Glob J Environ Sci Manag 3(4):341–350

    CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8(7):e68752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinković T, Štolfa Čamagajevac I, Tkalec M, Goessler W, Domazet Jurašin D, Vinković Vrček I (2018) Does plant growing condition affects biodistribution and biological effects of silver nanoparticles? Span J Agric Res 16:1–13

    Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Alvarez PJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Lombi E, Sekine R, Blamey FPC, Hernandez-Soriano MC, Kopittke PM (2015) Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology 9(8):1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169

    Article  CAS  Google Scholar 

  • Yang J, Jiang F, Ma C, Rui Y, Rui M, Adeel M, Xing B (2018) Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J Agric Food Chem 66(11):2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20(12):8636–8648

    Article  CAS  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):e47674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes NA, Nassef DM (2015) Effect of silver nanoparticles on salt tolerancy of tomato transplants (Solanum lycopersicom L. Mill.). Assiut. J Agric Sci 46:76–85

    Google Scholar 

  • Zou X, Li P, Lou J, Zhang H (2017) Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa. Aquat Toxicol 189:150–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sami, F., Siddiqui, H., Hayat, S. (2020). Impact of Silver Nanoparticles on Plant Physiology: A Critical Review. In: Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q. (eds) Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-33996-8_6

Download citation

Publish with us

Policies and ethics