Skip to main content

Role and Characterization of Nano-Based Membranes for Environmental Applications

  • Chapter
  • First Online:
Membranes for Environmental Applications

Abstract

Environmental issues emerge as a result of the harmful effects of human activities from different points of sources on biophysical environment. Lots of environmental damages can be rectified. The prevention of further damage can be achieved through the utilization of membrane separation processes. The utilization of membrane separation process to combat environmental pollution illustrates the application of membrane materials to effectively prevent environmental pollution in a sustainable manner. Nano-based membranes usually fabricated from organic polymer-based nanocomposites have proven to be promising membrane separation technology for environmental issues. In this report, we reviewed the role and characterizations of nano-based membranes for environmental applications. Thus, the major points are, firstly, factors influencing nano-based membranes performance and, secondly, important characterization techniques commonly used in characterizing the surface of membranes fabricated with the incorporation of nanomaterials. Thirdly, we reviewed the models used in characterizing the transport properties across nano-based membranes since these properties are principally controlled by the surface layer, thickness, porosity, and pore size. Finally, the environmental applications of nano-based membranes are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NF:

Nanofiltration

V p :

Permeate volume

RO:

Reverse osmosis

%R :

Percentage rejection

SEM:

Scanning electron microscopy

J :

Flux

AFM:

Atomic force microscopy

C i, m :

Bulk feed concentration

CNT:

Carbon nanotube

C i, p :

Permeate concentration

DE:

Dielectric exclusion

z i :

Valence of ion (i)

DSPM:

Donnan–steric partitioning pore model

D i, p :

Hindered diffusivity (m2/s)

TEM:

Transmission electron microscope

γ SV :

Solid–vapor interfacial energy

XRD:

X-ray powder diffractometer

γ SL :

Solid–liquid interfacial energy

PSCF:

Preferential sorption/capillary flow

γ LV :

Liquid–vapor interfacial energy

FTIR:

Fourier-transform infrared

θ γ :

Equilibrium contact angle

T :

Absolute temperature (K)

K i, c :

Convection hindrance factor

c i :

Concentration of ions in the membrane (mol/m3)

F :

Faraday constant (C/mol)

ϕ :

Equilibrium partition coefficient

ψ :

Electrical potential (V)

R :

Universal gas constant (J/mol.K)

D sm :

Diffusion coefficient

c T :

Total molar concentration

x :

Membrane thickness

K s :

Solute distribution coefficient

APAN:

Aminated polyacrylonitrile

MWCNTs:

Multi-walled carbon nanotubes

X d :

Effective charge density

r P :

Pore radius

e :

Electronic charge

ε b :

Dielectric constant of the bulk

YSZ:

yttrium-stabilized zirconia

ε m :

Dielectric constant of the membrane material

GO:

Graphene oxide

ε p :

Dielectric constant inside the pores

CM:

ceramic membranes

DSPM-DE:

Donnan–steric partitioning pore model with dielectric exclusion

References

  • Abdallah H, Shalaby MS, Shaban AMH (2015) Performance and characterization for blend membrane of PES with Manganese (III) Acetylacetonate as metalorganic nanoparticles. Int J Chem Eng:1–9. https://doi.org/10.1155/2015/896486

    Article  CAS  Google Scholar 

  • Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9(4):3077–3092

    Article  Google Scholar 

  • Abdelrasoul A, Doan H, Lohi A (2013) Fouling in membrane filtration and remediation methods. In: Mass transfer – advances in sustainable energy and environment oriented numerical modeling. Intech, Rijeka

    Google Scholar 

  • Abhang RM, Wani KS, Patil VS, Pangarkar BL, Parjane SB (2013) Nanofiltration for recovery of heavy metal ions from waste water - a review. Int J Res Environ Sci Technol 3(1):29–34

    Google Scholar 

  • Abidi A, Gherraf N, Ladjel S, Rabiller-Baudry M, Bouchami T (2016) Effect of operating parameters on the selectivity of nanofiltration phosphates transfer through a Nanomax-50 membrane. Arabian J Chem 9:S334–S341. https://doi.org/10.1016/j.arabjc.2011.04.014

    Article  CAS  Google Scholar 

  • Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng 128(3):253–260

    Article  CAS  Google Scholar 

  • Afsari M, Asghari M, Moghaddam PM (2017) Synthesis and characterization of supported Phenolic resin/Carbon nanotubes Carbon membranes for gas separation. Int J Nano Dimens 8(4):316–328

    CAS  Google Scholar 

  • Agashichev SP (2009) Modeling the influence of temperature on gel-enhanced concentration polarization in reverse osmosis. Desalination 236(1–3):252–258. https://doi.org/10.1016/j.desal.2007.10.074

    Article  CAS  Google Scholar 

  • Agboola O, Maree J, Mbaya R (2014) Characterization and performance of nanofiltration membranes: review. Environ Chem Lett 12:241–255. https://doi.org/10.1007/s10311-014-0457-3

    Article  CAS  Google Scholar 

  • Agboola O, Mokrani T, Sadiku ER, Kolesnikov A, Olukunle OI, Maree JP (2017) Characterization of two nanofiltration membranes for the separation of ions from acid mine Water. Mine Water Environ 36:401–408. https://doi.org/10.1007/s10230-016-0427-z

    Article  Google Scholar 

  • Ahmad AL, Ooi BS, Mohammad AW, Choudhury JP (2004) Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment. Desalination 168(1-3):215–221

    Article  CAS  Google Scholar 

  • Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S, Kim S-H, Bae SS, Park J, Yoon J (2012) Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem 18(5):1551–1559

    Article  CAS  Google Scholar 

  • Al-Sheetan KM, Shaik MR, AL-Hobaib AS, Alandis NM (2015) Characterization and evaluation of the improved performance of modified reverse osmosis membranes by incorporation of various organic modifiers and SnO2 nanoparticles. J Nanomater 2015:1–11. https://doi.org/10.1155/2015/363175

    Article  Google Scholar 

  • Amin MT, Alazba AA (2014) A review of nanomaterials based membranes for removal of contaminants from polluted waters. Membr Water Treat 5(2):123–146. https://doi.org/10.12989/mwt.2014.5.2.123

    Article  Google Scholar 

  • Amin TA, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  • Amouamouha M, Gholikandi GB (2017) Characterization and antibiofouling performance investigation of hydrophobic silver nanocomposite membranes: a comparative study. Membranes (Basel) 7(64):1–16. https://doi.org/10.3390/membranes7040064

    Article  CAS  Google Scholar 

  • Aravind SV, Kathirasen R (2017) Air pollution control using membrane technique. Int J Adv Res Civil, Struct, Environ Infrast Eng Dev 3(1):322–327

    Google Scholar 

  • Ariono KD, Wenten SIG (2017) Surface modification of ion-exchange membranes: Methods, characteristics, and performance. J Appl Polym Sci 2017:1–13

    Google Scholar 

  • Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM (2010) Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 75:229–242. https://doi.org/10.1016/j.seppur.2010.08.023

    Article  CAS  Google Scholar 

  • Ávila AF, de Oliveira AM, Lacerda GRDS, Munhoz VC, Santos MCG, Santos PF, Triplett M (2013) A nano-modified superhydrophobic membrane. Mater Res 16(3):609–613. https://doi.org/10.1590/S1516-14392013005000028

    Article  CAS  Google Scholar 

  • Bakajin O, Noy A, Fornasiero F, Grigoropoulus JK, Holt JB, Kim IS, Park HG (2009) Nanofluidic carbon nanotube membranes: applications for water purification and desalination. In: Savage et al (eds) . Willian Andrew Inc./Elsevier, New York, pp 77–93

    Google Scholar 

  • Baker RW (2004) Membrane technology and applications, 2nd edn. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  • Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121

    Article  CAS  Google Scholar 

  • Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Membr Sci 389:155–161. https://doi.org/10.1016/j.memsci.2011.10.025

    Article  CAS  Google Scholar 

  • Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Battirola LC, Gasparotto LHS, Rodrigues-Filho UP, Tremiliosi-Filho G (2012) Poly(imide)/organically-modified montmorillonite nanocomposite as a potential membrane for alkaline fuel cells. Membranes (Basel) 2:430–439. https://doi.org/10.3390/membranes2030430

    Article  CAS  Google Scholar 

  • Beril Gonder Z, Arayici S, Barlas H (2011) Advanced treatment of pulp and paper mill wastewater by nanofiltration process: effects of operating conditions on membrane fouling. Sep Purif Technol 76:292–302. https://doi.org/10.1016/j.seppur.2010.10.018

    Article  CAS  Google Scholar 

  • Binas V, Venieri D, Kotzias D, Kiriakidis G (2017) Modified TiO2 based photocatalysts for improved air and health quality. J Materiomics 3:3–16

    Article  Google Scholar 

  • Bodzek M (2000) Mebrane techniques in air cleaning. Polish J Environ Studies 9(1): 1–12

    Google Scholar 

  • Bodzek M, Dudziak M, Luks-Betlej K (2004) Application of membrane techniques to water purification. Removal of phthalates. Desalination 162(1–3):121–128

    Article  CAS  Google Scholar 

  • Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 238(1–3):229–246

    Article  CAS  Google Scholar 

  • Boussu K, Van der Bruggen B, Volodin A, Snauwaert J, Van Haesendonck C, Vandecasteele C (2005) Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM. J Colloid Interface Sci 286:632–638. https://doi.org/10.1016/j.jcis.2005.01.095

    Article  CAS  Google Scholar 

  • Bowen WR, Mohammad AW (1998) A theoretical basis for specifying nanofiltration membranes-dye/salt/water streams. Desalination 8(1-3):257–264. https://doi.org/10.1016/S0011-9164(98)00112-X

    Article  Google Scholar 

  • Bowen WR, Mukhtar H (1996) Characterisation and prediction of separation performance of nanofiltration membranes. J Membr Sci 112:263–274. https://doi.org/10.1016/0376-7388(95)00302-9

    Article  CAS  Google Scholar 

  • Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4):481–484. https://doi.org/10.1002/smll.200700863

    Article  CAS  Google Scholar 

  • Camacho LM, Dumée L, Zhang J, Li JD, Duke M, Gomez J, Gray S (2013) Advances in membrane distillation for water desalination and purification applications. Water 5:94–196

    Article  Google Scholar 

  • Carré A (2007) Polar interactions at liquid/polymer interfaces. J Adhes Sci Technol 21(10):961–981. https://doi.org/10.1163/156856107781393875

    Article  Google Scholar 

  • Cassano A (2017) Recovery technologies for water-soluble bioactives: advances in membrane-based processes. In: Engineering foods for bioactives stability and delivery, Food engineering series. Springer Science+Business Media, New York, p 64

    Google Scholar 

  • Chadar SN, Chadar K (2017) Solid waste pollution: a hazard to environment. Recent Adv Petrochem Sci 2(3):1–3

    Google Scholar 

  • Chen W, Chen S, Liang T, Zhang Q, Fan Z, Yin H, Huang K-W, Zhang X, Lai Z, Sheng P (2018) High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat Nanotechnol 13:345–350

    Article  CAS  Google Scholar 

  • Cheng W, Campolongo MJ, Tan SJ, Luo D (2009) Freestanding ultrathin nano-membranes via self-assembly: review. Nano Today 4:482–493. https://doi.org/10.1016/j.nantod.2009.10.005

    Article  CAS  Google Scholar 

  • Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507. https://doi.org/10.1016/j.progpolmsci.2007.01.008

    Article  CAS  Google Scholar 

  • Clarity AB (2009) Pathogen removal from water technologies and techniques. Filtration + separation: water and wastewater: Dexmet corporation. http://www.filtsep.com/water-and-wastewater/features/pathogen-removal-from-water-technologies-and/. Assessed 20 Oct 2018

  • Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B112(5):1427–1434

    Article  CAS  Google Scholar 

  • Dalwani M, Benes NE, Bargeman G, Stamatialis D, Wessling M (2011) Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes. J Membr Sci 372:228–238. https://doi.org/10.1016/j.memsci.2011.02.012

    Article  CAS  Google Scholar 

  • Das R (2017) Nanohybrid catalyst based on carbon nanotube: a step by step guideline from preparation to demonstration. Springer International Publishing, Cham, p 41

    Book  Google Scholar 

  • Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  • de Sousa FDB, de Engenharia CHSC, Aplicadas MCS (2014) The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers. Polímeros 24(6):661–672. https://doi.org/10.1590/0104-1428.1648

    Article  CAS  Google Scholar 

  • De J, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024. https://doi.org/10.1021/nl9021946

    Article  CAS  Google Scholar 

  • Dewettinck K, Le TT, Nguyen VB (2018) Membrane separations. In: Alternatives to conventional food processing, 2nd edn. Royal Society of Chemistry, London

    Google Scholar 

  • Dickinson RE, Cicerone RJ (1986) Future global warning from atmospheric trace gases. Nature 319:109–115

    Article  CAS  Google Scholar 

  • Dihua W, Xuesong L, Sanchuan Y, Meihong L, Congjie G (2010) Modification of aromatic polyamide thin-film composite reverse osmosis membranes by surface coating of thermo-responsive copolymers P(NIPAM-co-Am). I: preparation and characterization. J Membr Sci 352:76–85. https://doi.org/10.1016/j.memsci.2010.01.061

    Article  CAS  Google Scholar 

  • Dong L-X, Yang H-W, Liu S-T, Wang X-M, Xie YF (2015) Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes. Desalination 365:70–78

    Article  CAS  Google Scholar 

  • Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115(47):23261–23266. https://doi.org/10.1021/jp206258u

    Article  CAS  Google Scholar 

  • Elaine Fung Y-L, Wang H (2013) Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J Membr Sci 444:252–258. https://doi.org/10.1016/j.memsci.2013.05.025

    Article  CAS  Google Scholar 

  • El-Arnaouty MB, Abdel Ghaffar AM, Eid M, Aboulfotouh ME, Taher NH, Soliman E-S (2018) Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. J Radiation Res Appl Sci:1–13. https://doi.org/10.1016/j.jrras.2018.01.005

    Article  CAS  Google Scholar 

  • Elia P, Nativ-Roth E, Zeiri Y, Porat Z (2016) Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs. Microporous Mesoporous Mater 225:465–471. https://doi.org/10.1016/j.micromeso.2016.01.007

    Article  CAS  Google Scholar 

  • Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717

    Article  CAS  Google Scholar 

  • Elnashaie SS, Danafar F, Rafsanjani HH (2015) Nanotechnology for chemical engineers. Springer, Singapore, p 104

    Book  Google Scholar 

  • Fadaei F, Hoshyargar V, Shirazian S, Ashrafizadeh AN (2012) Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects. Desalination 284:316–323

    Article  CAS  Google Scholar 

  • Fard AK, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, Atieh M (2018) Inorganic membranes: preparation and application for water treatment and desalination-review. Materials 11(74):1–47. https://doi.org/10.3390/ma11010074

    Article  CAS  Google Scholar 

  • Frank GK (2007) Industrial gas handbook: gas separation and purification. CRC Press, New York, pp 275–280

    Google Scholar 

  • Gallucci F, Basile A, Hai FI (2011) Introduction-a review of membrane reactors. In: Membranes for membrane reactors: preparation, optimization and selection. Wiley, Chichester

    Google Scholar 

  • Gellé A, Moores A (2017) Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles. Pure Appl Chem 89(12):1817–1827

    Article  CAS  Google Scholar 

  • Genne I, Kuypers S, Leysen R (1996) Effect of the addition of ZrO2 to polysulfone based UF membranes. J Membr Sci 113:343–350

    Article  CAS  Google Scholar 

  • Ghaemi N (2016) A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl Surf Sci 364:221–228. https://doi.org/10.1016/j.apsusc.2015.12.109

    Article  CAS  Google Scholar 

  • Ghaemi N, Madaeni SS, Alizadeh A, Rajabi H, Daraei P (2011) Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J Membr Sci 382:135–147. https://doi.org/10.1016/j.memsci.2011.08.004

    Article  CAS  Google Scholar 

  • Goh PS, Ng BC, Lau WJ, Ismail AF (2014) Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep Purif Rev 44(3):216–249

    Article  CAS  Google Scholar 

  • Goosen MFA, Sablani SS, Al-Maskari SS, Al-Belushi RH, Wilf M (2002) Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems. Desalination 144:367–372. https://doi.org/10.1016/S0011-9164(02)00345-4

    Article  CAS  Google Scholar 

  • Gozálvez-Zafrilla JM, Santafé-Moros A (2008) Nanofiltration modeling based on the extended nernst-planck equation under different physical modes. In: Excerpt from the proceedings of the COMSOL conference 2008 Hannover, Germany

    Google Scholar 

  • Gozálvez-Zafrilla JM, Gómez-Martínez B, Santafé-Moros A (2005) Evaluation of nanofiltration processes for brackish water treatment using the dspm model. In: European symposium on computer aided process engineering – 15

    Google Scholar 

  • Griffin JW (Product Manager, Tetratec) (2018) High temperature filtration media in incineration. http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/nawtec07/nawtec07-07.pdf. Accessed 7 Nov 2018

  • Gunawan P, Guan C, Song X, Zhang Q, Leong SSJ, Tang C, Chen Y, Chan-Park MB, Chang MW, Wang K, Xu R (2011) Hallow fiber membrane decorated with Ag/MWCNTs: toward effective water disinfection and biofouling control. ACS Nano 5(12):10033–10040

    Article  CAS  Google Scholar 

  • Hamzah N, Leo CP (2017) Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: separation, fouling and self-cleaning evaluation. Desalination 418:79–88

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Rashid ARMH, Olabi AG (2017) Characterization of porous glass and ceramics by mercury intrusion porosimetry. Ref Mod Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-803581-8.09266-3

    Google Scholar 

  • He Y, Li G, Wang H, Zhao J, Su H, Huang Q (2008) Effect of operating conditions on separation performance of reactive dye solution with membrane process. J Membr Sci 321(2):183–189. https://doi.org/10.1016/j.memsci.2008.04.056

    Article  CAS  Google Scholar 

  • Herterich JG, Griffiths IM, Field RW, Vella D (2014) The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls. AIChE J 60(5):1891–1904

    Article  CAS  Google Scholar 

  • Hidalgo AM, Leȯn G, Gȯmez M, Murcia MD, Barbosa DS, Blanco P (2013) Application of the solution-diffusion model for the removal of atrazine using a nanofiltration membrane. Desalin Water Treat 51(10–12):2244–2252. https://doi.org/10.1080/19443994.2012.734720

    Article  CAS  Google Scholar 

  • Hilal N, AI-Zoubi H, Darwish NA, Mohammad AW (2005) Characterisation of nanofiltration membranes using atomic force microscopy. Desalination 177:187–199. https://doi.org/10.1016/j.desal.2004.12.008

    Article  CAS  Google Scholar 

  • Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D (2017) Membrane characterization, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65

    Article  CAS  Google Scholar 

  • Ho WSW, Sirkar KK (1992) Membrane handbook, vol 1. Springer Science, New York

    Book  Google Scholar 

  • Hoang T, Stevens G, Kentish S (2010) The effect of feed pH on the performance of a reverse osmosis membrane. Desalination 261:99–103. https://doi.org/10.1016/j.desal.2010.05.024

    Article  CAS  Google Scholar 

  • Homayoonfal M, Mehrnia MR, Shariaty-Niassar M, Akbari A, Sarrafzadeh MH, Ismail AF (2015) Fabrication of magnetic nanocomposite membrane for separation of organic contaminant from water. Desalin Water Treat 54(13):3603–3609

    Article  CAS  Google Scholar 

  • Huang FL, Wang QQ, Wei QF, Gao WD, Shou HY, Jiang SD (2010) Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polym Lett 4(9):551–558. https://doi.org/10.3144/expresspolymlett.2010.69

    Article  CAS  Google Scholar 

  • Hussain S, Amade R, Jover E, Bertran E (2012) Functionalization of carbon nanotubes by water plasma. Nanotechnology 23(38):385604

    Article  CAS  Google Scholar 

  • Ihsanullah (2019) Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep Purif Technol 209:307–337

    Article  CAS  Google Scholar 

  • Isawia H, El-Sayeda MH, Xianshe F, Hosam S, Abdel Mottaleb MS (2016) Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl Surf Sci 385:268–281. https://doi.org/10.1016/j.apsusc.2016.05.141

    Article  CAS  Google Scholar 

  • Izadpanah AA, Javidnia A (2012) The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater. Water 4:283–294

    Article  CAS  Google Scholar 

  • Jang JH, Lee J, Jung S-Y, Choi D-C, Won Y-J, Ahn KY, Park PY, Lee CH (2015) Correlation between particle deposition and the size ratio of particles to patterns in nano- and micro-patterned membrane filtration systems. Sep Purif Technol 156:608–616. https://doi.org/10.1016/j.seppur.2015.10.056

    Article  CAS  Google Scholar 

  • Jhaveri JH, Murthy ZVP (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154

    Article  CAS  Google Scholar 

  • Jian X, Dai Y, He G, Chen G (1999) Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application. J Membr Sci 161(1-2):185–191. https://doi.org/10.1016/S0376-7388(99)00112-X

    Article  CAS  Google Scholar 

  • Jiang CY, Rybak BM, Markutsya S, Kladitis PE, Tsukruk VV (2005) Self-recovery of stressed nanomembranes. Appl Phys Lett 86(12):121912–121913. https://doi.org/10.1063/1.1889239

    Article  CAS  Google Scholar 

  • Jiang C, Kommireddy DS, Tsukruk VV (2006) Gradient array of freely suspended nanomembranes. Adv Funct Mater 16:27–32. https://doi.org/10.1002/adfm.200500326

    Article  CAS  Google Scholar 

  • Johnson DJ, Al Malek SA, Al-Rashdi BAM, Hilal N (2012) Atomic force microscopy of nanofiltration membranes: effect of imaging mode and environment. J Membr Sci 389:486–498. https://doi.org/10.1016/j.memsci.2011.11.023

    Article  CAS  Google Scholar 

  • Johnson DJ, Oatley-Radcliffe DL, Hilal N (2018) State of the art review on membrane surface characterization: visualisation, verification and quantification of membrane properties. Desalination 434:12–36. https://doi.org/10.1016/j.desal.2017.03.023

    Article  CAS  Google Scholar 

  • Kadam VV, Wang L, Padhye R (2016) Electrospun nanofibre materials to filter air pollutants - a review. J Ind Text 47(8):2253–2280

    Article  CAS  Google Scholar 

  • Kanagalakshmi AS, Sharankumar A, Shenbagavalli E, Tamilpriya S, Durga P (2018) Nanotechnology in water purification. J Mech Civil Eng 15(1):47–52. https://doi.org/10.9790/1684-1501024752

    Article  Google Scholar 

  • Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL (2010) Permeability-selectivity analysis for ultrafiltration: effect of pore geometry. J Membr Sci 349:405–410. https://doi.org/10.1016/j.memsci.2009.12.003

    Article  CAS  Google Scholar 

  • Kang M, Jung R, Kim HS, Jin HJ (2008) Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloid Surf A 313:411–414

    Article  CAS  Google Scholar 

  • Kar S, Bindal RC, Tewari PK (2012) Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7(5):385–389. https://doi.org/10.1016/j.nantod.2012.09.002

    Article  CAS  Google Scholar 

  • Kegel FS, Rietman BM, Verliefde ARD (2010) Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate. Water Sci Technol 6(10):2603–2610. https://doi.org/10.2166/wst.2010.166

    Article  CAS  Google Scholar 

  • Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84(10):1419–1436. https://doi.org/10.1002/jctb.2216

    Article  CAS  Google Scholar 

  • Khulbe KC, Feng CY, Matsuura TS (2008) Synthetic polymeric membranes characterization by atomic force microscopy. Springer, Berlin, p 17

    Google Scholar 

  • Khulbe CK, Feng CY, Matsuura T (2010) Membrane characterization. In: Desalination and water resources: membrane processes, vol II. Eolss Publishers/UNESCO, Oxford, p 140

    Google Scholar 

  • Kim J, Van der Bruggen B (2010) The use of nanoparticles and nanotubes in polymeric and ceramic membrane structures: review of envisaged performance improvements for water treatment. Environ Pollut 158(7):2335–2349. https://doi.org/10.1016/j.envpol.2010.03.024

    Article  CAS  Google Scholar 

  • Kim ES, Liu Y, Gamal El-Din M (2013) An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. J Membr Sci 429:418–427

    Article  CAS  Google Scholar 

  • Kim KS, Moon DS, Kim HJ, Lee SW, Ji H, Jung HJ, Won HJ (2014) The effect of feed temperature on permeate flux during membrane separation. J Korean Soc Mar Environ Energy 17(1):13–19. https://doi.org/10.7846/JKOSMEE.2014.17.1.13

    Article  CAS  Google Scholar 

  • Kiso Y, Kon T, Kitao T, Nishimura K (2001) Rejection properties of alkyl phthalates with nanofiltration membranes. J Membr Sci 182(1-2):205–214

    Article  CAS  Google Scholar 

  • Konruang S, Chittrakarn T, Sirijarukul S (2014) Surface modification of asymmetric polysulfone membrane by UV irradiation. J Teknol 70:55–60. https://doi.org/10.11113/jt.v70.3435

    Article  Google Scholar 

  • Kotrappanavar NS, Hussain AA, Abashar MEE, Al-Mutaz IS, Aminabhavi TM, Nadagouda MN (2011) Prediction of physical properties of nanofiltration membranes for neutral and charged solutes. Desalination 3:174–181

    Article  CAS  Google Scholar 

  • Kowalik-Klimczak A, Zalewski M, Gierycz P (2016) Removal of Cr(III) ions from salt solution by nanofiltration: experimental and modelling analysis. Polish J Chem Technol 18(3):10–16. https://doi.org/10.1515/pjct-2016-0042

    Article  CAS  Google Scholar 

  • Kumar J, Bansal A (2013) Photocatalysis by nanoparticles of titanium dioxide for drinking water purification: a conceptual and state-of-art review. Mater Sci Forum 764:30–150

    Article  CAS  Google Scholar 

  • Kumar SR, Gopinath P (2016) Dual applications of silver nanoparticles incorporated functionalized MWCNTs grafted surface modified PAN nanofibrous membrane for water purification. RSC Adv 6:109241–109252

    Article  CAS  Google Scholar 

  • Labbez C, Fievet P, Szymczyk A, Vidonne A, Foissy A, Pagetti J (2002) Analysis of the salt retention of a titania membrane using the ‘DSPM’ model: effect of pH, salt concentration and nature. J Membr Sci 208(3):15–3290

    Google Scholar 

  • Ladewig B, Al-Shaeli MNZ (2017) Fundamentals of membrane processes. In: Fundamentals of membrane bioreactors. Springer Nature Singapore, Singapore

    Chapter  Google Scholar 

  • Lanteri Y, Fievet P, Szymczyk A (2009) Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements. J Colloid Interface Sci 331:148–155

    Article  CAS  Google Scholar 

  • Lee J-W, Yoo Y-T, Lee JY (2015) Characterization of nafion nanocomposites with spheric silica, layered silicate, and amphiphilic organic molecule and their actuator application. Macromol Res 23(2):167–176. https://doi.org/10.1007/s13233-015-3029-x

    Article  CAS  Google Scholar 

  • Levchenko I, Han Z-J, Kumar S, Yick S, Fang J, Ostrikov K (2013) Large arrays and networks of carbon nanotubes: morphology control by process parameters. In: Syntheses and applications of carbon nanotubes and their composites. Intech, Rijeka

    Google Scholar 

  • Li NN, Fane AG, Winston WS, Matsuura T (2008) Advanced membrane technology and applications. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  • Li L, Sokol N, Eigil JG, Etchells VM (2012) Nanoporous polymers for membrane applications. Department of Chemical Engineering, Technical University of Denmark, Kgs.Lyngby

    Google Scholar 

  • Li L, Song C, Jiang D, Wang T (2017a) Preparation and enhanced gas separation performance of carbon/carbon nanotubes (C/CNTs) hybrid membranes. Sep Purif Technol 188:73–80

    Article  CAS  Google Scholar 

  • Li SH, Huang JY, Chen Z, Chen GQ, Lai YK (2017b) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5:31–55

    Article  CAS  Google Scholar 

  • Lu GQ, Zhao XS (2004) Nanoporous materials - science and engineering. In: Nanoporous Materials-an Overview. World Scientific, Singapore

    Chapter  Google Scholar 

  • Luo J, Wan Y (2013) Effects of pH and salt on nanofiltration—a critical review. J Membr Sci 438:18–28

    Article  CAS  Google Scholar 

  • Ma N, Zhang Y, Quan X, Fan X, Zhao H (2010) Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties. Water Res 44:6104–6114

    Article  CAS  Google Scholar 

  • Mago G, Kalyon DM, Fisher FT (2008) Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. J Nanomater:1–8. https://doi.org/10.1155/2008/759825

    Article  CAS  Google Scholar 

  • Mansoori GA, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology. Annual Rev Nano Res 2:439–493

    Article  CAS  Google Scholar 

  • Mansourpanah Y, Gheshlaghi A (2012) Effects of adding different ethanol amines during membrane preparation on the performance and morphology of nanoporous PES membranes. J Polym Res 19(13):1–7. https://doi.org/10.1007/s10965-012-0013-4

    Article  CAS  Google Scholar 

  • Marrufo-Hernández NA, Hernández-Guerrero M, Nápoles-Duarte JM, Palomares-Báez JP, Chávez-Rojo MA (2018) Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations. AIP Adv 8(035308):1–15. https://doi.org/10.1063/1.5009568

    Article  CAS  Google Scholar 

  • Maximous N, Nakhla G, Wan W, Wong K (2010) Performance of a novel ZrO2/PES membrane for wastewater filtration. J Membr Sci 352(1–2):222–230

    Article  CAS  Google Scholar 

  • Mehta A, Zydney AL (2005) Permeability and selectivity analysis for ultrafiltration membranes. J Membr Sci 249:245–249. https://doi.org/10.1016/j.memsci.2004.09.040

    Article  CAS  Google Scholar 

  • Michael FL, Volder D, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  CAS  Google Scholar 

  • MingJian L, XianBao W, Rong T, Li W, ShaoQing L, Qin L (2009) Carbon nanotubes periodically decorated by high density polyethylene crystalline using solution crystallization. Sci China Ser B-Chem 52(7):905–910

    Article  CAS  Google Scholar 

  • Mohamed EF (2017) Nanotechnology: future of environmental air pollution control. Environ Manage Sustainable Dev 6(2):439–454

    Article  Google Scholar 

  • Mohammed A, Pei L, Kadhum MA (2002) Characterization and identification of rejection mechanisms in nanofiltration membranes using extended Nernst-Plank model. Clean Technol Environ Policy 4:151–156

    Article  CAS  Google Scholar 

  • Mokhtari S, Rahimpour A, Shamsabadi AA, Habibzadeh S, Soroush M (2017) Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles. Appl Surf Sci 393:93–102. https://doi.org/10.1016/j.apsusc.2016.10.005

    Article  CAS  Google Scholar 

  • Moll DJ, Burmester AF, Young TC, McReynolds KB, Clark JE, Hotz CZ, Wessling RA, Quarderer GJ, Lacher RM (1997) Gas separations utilizing glassy polymer membranes at sub-ambient temperatures. European Patent number: EP 0 529 052 B1

    Google Scholar 

  • Mondal S (2017) Carbon nanomaterials based membranes. J Membr Sci Technol 6(4):1–3

    Google Scholar 

  • Mulder M (1994) The use of membrane processes in environ mental problems. An introduction. In: Crepso JG, Boddeker KW (eds) Membrane processes in separation and purification. Kluwer Academic Publishers, Dordrecht-Boston-London, pp 229–262

    Chapter  Google Scholar 

  • Muller RA, Muller EA (2017) Fugitive methane and the role of atmospheric half-life: an overview. Geoinfor Geostat 5(3):1–7. https://doi.org/10.4172/2327-4581.1000162

    Article  Google Scholar 

  • Mulyanti R, Susanto H (2018) Wastewater treatment by nanofiltration membranes. IOP Conf Ser Earth Environ Sci 142(012017):1–6. https://doi.org/10.1088/1755-1315/142/1/012017

    Article  Google Scholar 

  • Muralikrishnan R, Swarnalakshmi M, Nakkeeran E (2014) Nanoparticle-membrane filtration of vehicular exhaust to reduce air pollution - a review. Int Res J Environ Sci 3(4):82–86

    CAS  Google Scholar 

  • Najari S, Omidkhah M, Hosseini SS (2015) An investigation on the factors affecting the properties and performance of polymeric nanocomposite membranes for olefin/paraffin Separation. In: 5th International biennial conference on ultrafine grained and nanostructured materials, UFGNSM15, 11–12th Nov 2015, Iran, pp 1–6

    Google Scholar 

  • Nasab SS, Zahmatkesh S (2017) Preparation, structural characterization, and gas separation properties of functionalized zinc oxide particle filled poly(ether-amide) nanocomposite films. J Plast Film Sheet 33(1):92–113

    Article  CAS  Google Scholar 

  • Nguyen QH, Ali M, Nasir S, Ensinger W (2015) Transport properties of track-etched membranes having variable effective pore-lengths. Nanotechnology 26(48):485502

    Article  CAS  Google Scholar 

  • Omar L, Liu C, Chong TH, Lienhard JHV (2017) Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening. J Membr Sci 521:18–32

    Article  CAS  Google Scholar 

  • Pandey N, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview. J Nanocompos 3(2):47–66

    Article  CAS  Google Scholar 

  • Patterson DA, Havill A, Costello S, See-Toh YH, Livingston AG, Turner A (2009) Membrane characterisation by SEM, TEM and ESEM: the implications of dry and wetted microstructure on mass transfer through integrally skinned polyimide nanofiltration membranes. Sep Purif Technol 66:90–97. https://doi.org/10.1016/j.seppur.2008.11.022

    Article  CAS  Google Scholar 

  • Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456

    Article  CAS  Google Scholar 

  • Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B Environ 99:448–460

    Article  CAS  Google Scholar 

  • Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971. https://doi.org/10.1039/c0ee00541j

    Article  CAS  Google Scholar 

  • Pourzamani H, Bina B, Amin MM, Rashidi A (2012) Monoaromatic pollutant removal by carbon nanotubes from aqueous solution. Adv Mater Res 488–489:934–939

    Article  CAS  Google Scholar 

  • Prabhudessai V, Ganguly A, Mutnuri A (2013) Biochemical methane potential of agro wastes. J Energy 2013:1–7

    Article  CAS  Google Scholar 

  • Prádanos P, Rodríguez-Méndez ML, Calvo JI, Hernández A, Tejerina F, De Saja JA (1996) Structural characterization of an UF membrane by gas adsorption-desorption and AFM measurements. J Membr Sci 117(1):291–302

    Article  Google Scholar 

  • Qin J-J, Oo MH, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56(2):199–203

    Article  CAS  Google Scholar 

  • Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Astinchap B, Zinadini S, Razavizadeh SH (2015) Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 349:66–77. https://doi.org/10.1016/j.apsusc.2015.04.214.

    Article  CAS  Google Scholar 

  • Rautenbach R, Welsch K (1993) Treatment of landfill gas by gas permeation - pilot plant results and comparison to alternatives. Desalination 90(1-3):193–207. https://doi.org/10.1016/0011-9164(93)80176-N

    Article  CAS  Google Scholar 

  • Raval HD, Gohil JM (2009) Carbon nanotube membrane for water desalination. Int J Nuclear Desalin 3(4):360–368

    Article  CAS  Google Scholar 

  • Ray JR, Wong W, Jun YS (2017) Antiscaling efficacy of CaCO3 and CaSO4 on polyethylene glycol (PEG)-modified reverse osmosis membranes in the presence of humic acid: interplay of membrane surface properties and water chemistry. Phys Chem Chem Phys 19(7):5647–5657

    Article  CAS  Google Scholar 

  • Razmkhah M, Ahmadpour A, Mosavian ATH, Moosavi F (2017) What is the effect of carbon nanotube shape on desalination process? a simulation approach. Desalination 407:103–115

    Article  CAS  Google Scholar 

  • Rezaei Hosseinabadi S, Wyns K, Meynen V, Carleer R, Adriaensens P, Buekenhoudt A, Van der Bruggen B (2014) Organic solvent nanofiltration with Grignard functionalised ceramic nanofiltration membranes. J Membr Sci 454:496–504. https://doi.org/10.1016/j.memsci.2013.12.032

    Article  CAS  Google Scholar 

  • Richards HL, Baker PGL, Iwuoha E (2012) Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: a critical review. J Surf Eng Mater Adv Technol 2:183–193

    CAS  Google Scholar 

  • Roco MC, Williams S, Alivisatos P (2000) IWGN workshop report. Nanotechnology research directions: Vision for nanotechnology in the next decade. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Rowe BW, Robeson LM, Freeman BD, Paul DR (2010) Influence of temperature on the upper bound: theoretical considerations and comparison with experimental results. J Membr Sci 360:58–69. https://doi.org/10.1016/j.memsci.2010.04.047

    Article  CAS  Google Scholar 

  • Roy S, Singha NR (2017) Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes (Basel) 7(53):1–64

    Google Scholar 

  • Roy Y, Sharqawy MH, John H, Lienhard V (2015) Modeling of flat-sheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration. J Membr Sci 493:360–372

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251

    Article  CAS  Google Scholar 

  • Schaep J, Van der Bruggen B, Uytterhoeven S, Croux R, Vandecasteele C, Wilms D, Van Houtte E, Vanlerberghe F (1998) Removal of hardness from groundwater by nanofiltration. Desalination 119(1–3):295–302. https://doi.org/10.1016/S0011-9164(98)00172-6

    Article  CAS  Google Scholar 

  • Schaep J, Vandecasteele C, Mohammad AW, Bowen WR (1999) Analysis of salt retention of nanofiltration membranes using the Donnan-Steric Partitioning Pore Model. Sep Sci Technol 34(15):3009–3030

    Article  CAS  Google Scholar 

  • Schaep J, Vandecasteele C, Mohammad AW, Bowen WR (2001) Modelling the retention of ionic components for different nanofiltration membranes. Sep Purif Technol 22-23(1-3):169–179

    Article  Google Scholar 

  • Scholten E, Bromberg L, Rutledge GC, Hatton TA (2011) Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interface 3(10):3902–3909. https://doi.org/10.1021/am200748y

    Article  CAS  Google Scholar 

  • Sekuliċ J, Luiten MWJ, ten Elshof JE, Benes NE, Keizer K (2002) Microporous silica and doped silica membrane for alcohol dehydration by pervaporation. Desalination 148(1–3):19–23

    Article  Google Scholar 

  • Senapati S, Chandra A (2001) Dielectric constant of water confined in a nanocavity. J Phys Chem B 105:5106–5109

    Article  CAS  Google Scholar 

  • Shaaban AMF, Hafez AI, Abdel-Fatah MA, Abdel-Monem NM, Mahmoud MH (2016) Process engineering optimization of nanofiltration unit for the treatment of textile plant effluent in view of solution diffusion model. Egypt J Pet 25:79–90. https://doi.org/10.1016/j.ejpe.2015.03.018

    Article  Google Scholar 

  • Shahabadi SMS, Brant JA (2019) Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Sep Purif Technol 210:587–599

    Article  CAS  Google Scholar 

  • Shahtalebi A, Sarrafzadeh MH, Montazer Rahmati MM (2011) Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical wastewater. Iran J Environ Health Sci Eng 8(2):109–116

    CAS  Google Scholar 

  • Sharma RR, Agrawal R, Chellam S (2003) Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters. J Membr Sci 223:69–87. https://doi.org/10.1016/S0376-7388(03)00310-7

    Article  CAS  Google Scholar 

  • Shon HK, Phuntsho S, Chaudhary DS, Vigneswaran S, Cho J (2013) Nanofiltration for water and wastewater treatment – a mini review. Drink Water Eng Sci 6:47–53

    Article  CAS  Google Scholar 

  • Silva V (2015) Dielectric excusion model in membranes. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, Heidelberg

    Google Scholar 

  • Silva LLS, Moreira CG, Curzio BA, da Fonseca FV (2017) Micropollutant removal from water by membrane and advanced oxidation processes-a review. J Water Resourc Protect 9:411–431

    Article  CAS  Google Scholar 

  • Song C, Kwon T, Han J-E, Shandell M, Strano MS (2009) Controllable synthesis of single-walled carbon nanotube framework membranes and capsules. Nano Lett 9(12):4279–4284

    Article  CAS  Google Scholar 

  • Sourirajan S (1970) Reverse osmosis. Academic Press, New York

    Google Scholar 

  • Sourirajan S (1978) The science of reverse osmosis – mechanisms, membranes, transport and applications. Pure Appl Chem 50:593–615

    Article  CAS  Google Scholar 

  • Strathmann H (2011) Introduction to membrane science and technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Sun CZ, Wen B, Bai BF (2015) Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull 60:1807–1823

    Article  CAS  Google Scholar 

  • Susanto H (2011) Teknologi Membran. Badan Penerbit Universitas Diponegoro, Semarang

    Google Scholar 

  • Szymczyk A, Fievet P (2005) Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J Membr Sci 252:77–88. https://doi.org/10.1016/j.memsci.2004.12.002

    Article  CAS  Google Scholar 

  • Tanninen J, Nystrom M (2002) Separation of ions in acidic conditions using NF. Desalination 147:295–299. https://doi.org/10.1016/S0011-9164(02)00555-6

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136. https://doi.org/10.1021/cr050569o

    Article  CAS  Google Scholar 

  • Tayefeh A, Mousavi SA, Wiesner M, Poursalehi R (2015) Synthesis and surface characterization of magnetite-titania nanoparticles/polyamide nanocomposite smart RO membrane. 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15. Proc Mater Sci 11:342–346

    Article  CAS  Google Scholar 

  • Thuyavan YL, Anantharaman N, Arthanareeswaran G (2014) Adsorptive removal of humic acid by zirconia embedded in poly (ether sulfone) membrane. Ind Eng Chem Res 53(28):11355–11364. https://doi.org/10.1021/ie5015712

    Article  CAS  Google Scholar 

  • Thwala JM, Minghua L, Wong MSY, Kang S, Hoek EMV, Mamba BB (2013) Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions. Langmuir 29(45):13773–13782. https://doi.org/10.1021/la402749y

    Article  CAS  Google Scholar 

  • Tsuru T, Nakao SI, Kimura S (1991) Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. J Chem Eng Jpn 24:511–517

    Article  CAS  Google Scholar 

  • Tylkowski B, Tsibranska T (2015) Overview of main techniques used for membrane characterization. J Chem Technol Metal 50(1):3–12

    Google Scholar 

  • Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A (2018) Progress of nanocomposite membranes for water treatment: review. Membranes (Basel) 8(18):1–40

    Google Scholar 

  • Valadez-Blanco R, Livingston AG (2009) Solute molecular transport through polyimide asymmetric organic solvent nanofiltration (OSN) membranes and the effect of membrane-formation parameters on mass transfer. J Membr Sci 326(2):332–342

    Article  CAS  Google Scholar 

  • Van Rijn CJM (2004) Nano and macro engineered membrane technology, Membrane science and technology series 10. Elsevier, Amsterdam, p 4

    Google Scholar 

  • Vandezande P, Gevers LEM, Vankelecom IFJ (2008) Solvent resistance nanofiltration: separating on a molecular level. Chem Soc Rev 37:365–405. https://doi.org/10.1039/B610848M

    Article  CAS  Google Scholar 

  • Verdejo R, Bernal MM, Romasanta LJ, Tapiador FJ, Lopez-Manchado MA (2011) Reactive nanocomposite foams. Cellular Polym 30(2):45–61

    Article  CAS  Google Scholar 

  • Vezzani D, Bandini S (2002) Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes. Desalination 149:477483

    Article  Google Scholar 

  • Wang G, Chen S, Yu H, Quan X (2015) Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment. J Hazard Mater s 299:27–34

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Li M, Dong J, Sun C, Chen G (2018) Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. Int J Environ Res Public Health 15(269):1–12

    Google Scholar 

  • WARWICK (2018) warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/techniques/structural/tem/. Assessed 23 Aug 2018

    Google Scholar 

  • Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci 107:1–21. https://doi.org/10.1016/0376-7388(95)00102-I

    Article  CAS  Google Scholar 

  • World Health Organization (2011) Safe drinking water from desalination. WHO/HSE/WSH/11.03. http://www.who.int/water_sanitation_health/publications/2011/desalination_guidance_en.pdf. Assessed 21 Oct 2018

  • Xu Q, Xu H, Chen J, Lv Y, Dong C, Sreeprasad TS (2015) Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorg Chem Front 2:417–424

    Article  CAS  Google Scholar 

  • Xu YY, Wei XL, Liang S, Sun YL, Chao ZS (2018) Synthesis of a ZSM-5/NaA hybrid zeolite membrane using kaolin as a modification layer. New J Chem 42:6664–6672

    Article  CAS  Google Scholar 

  • Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136

    Article  CAS  Google Scholar 

  • Yaroshchuk AE (2000) Dielectric exclusion of ions from membranes. Adv Colloid Interface Sci 85:193–230

    Article  CAS  Google Scholar 

  • Yoon S-H (2016) Membrane bioreactor processes: principles and applications, Advances in water and wastewater transport and treatment, 1st edn. CRC Press, Taylor and Francis, London

    Google Scholar 

  • Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270(1–2):88–100

    Article  CAS  Google Scholar 

  • Younssi SA, Breida M, Achiou B (2018) Alumina membranes for desalination and water treatment. Intech, Rijeka

    Book  Google Scholar 

  • Zahid M, Rashid A, Akram S, Rehan ZA, Razzaq W (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol 8(1):1–20. https://doi.org/10.4172/2155-9589.1000179

    Article  Google Scholar 

  • Zahri K, Goh PS, Ismail AF (2016) The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2/CH4 separation. Earth Environ Sci 36:012007

    Google Scholar 

  • Zhang Y, Liu P (2015) Polysulfone(PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning wastewater. J Membr Sci 493:275–284

    Article  CAS  Google Scholar 

  • Zhang Y, Shan X, Jin Z, Wang Y (2011) Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil. J Hazard Mater 192(2):559–567

    Article  CAS  Google Scholar 

  • Zhang Y, Liu F, Lu Y, Zhao L, Song L (2013) Investigation of phosphorylated TiO2-SiO2 particles/polysulfone composite membrane for wastewater treatment. Desalination 324:118–126

    Article  CAS  Google Scholar 

  • Zhang Q, Chen S, Fan X, Zhang H, Yu H, Quan X (2018) A multifunctional graphene-based nanofiltration membrane under photo assistance for enhanced water treatment based on layer-by-layer sieving. Appl Catal B Environ 224:204–213

    Article  CAS  Google Scholar 

  • Zhao Y, Tan Y, Wong FS, Fane A, Xu N (2006) Formation of Mg(OH)2 dynamic membranes for oily water separation: Effects of operating conditions. Desalination 191:344–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agboola, O. et al. (2020). Role and Characterization of Nano-Based Membranes for Environmental Applications. In: Zhang, Z., Zhang, W., Lichtfouse, E. (eds) Membranes for Environmental Applications. Environmental Chemistry for a Sustainable World, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-33978-4_8

Download citation

Publish with us

Policies and ethics