Skip to main content

Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 42))

Abstract

In this communication, we discuss various production methods as potential venues targeted towards alternative fuel generation. These will revolve around the Fischer–Tropsch (FT) process and biodiesel and hydrogen generation techniques. The implementation of membrane reactors in the production of fuels will be shown and discussed; and their advantages will be detailed. The main routes of hydrogen production are also detailed, which include autothermal reforming and biological process. This was done to compare the main advantages of various techniques for the production of hydrogen, as it is noted to be the most desired utility fuel that can serve various purposes. The application of membranes also facilitates an increase in the conversion of desired products while shifting the equilibrium of the reaction and reducing undesired by-products. Membrane reactors also overcome immiscibility issues that hinder conventional reactor processes. Membrane reactors are also demonstrated to reduce the difficulty in separating and purifying impurities, as they couple separation and reaction in one process. This shows drastic economic and energy requirement reductions in the amount of wastewater treatment associated with conventional fuel production reactor. Emphasis is also paid to catalytic membranes used for the production of biodiesel, which can also remove glycerol from the product line as an added advantage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CH4 :

Methane

CO:

Carbon monoxide

CO2 :

Carbon dioxide

FAME:

Fatty acid methyl esters

FT:

Fischer–Tropsch

GHGs:

Greenhouse gases

HC:

Hydrocarbon

ML-CMR:

Monolith loop catalytic membrane reactor

Ni:

Nickel (-based catalyst)

O2 :

Oxygen

PSA:

Pressure swing absorption

PVA:

Poly(vinyl alcohol)

Rh:

Rhodium (-based catalyst)

SMR:

Steam methane reforming

SO2 :

Sulfur dioxide

SPVA:

Sulfonated poly(vinyl alcohol)

TCT:

Thermochemical treatment

References

  • Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manag 63:138–148

    Article  CAS  Google Scholar 

  • Aca-Aca G, Loría-Bastarrachea MI, Ruiz-Treviño FA, Aguilar-Vega M (2018) Transesterification of soybean oil by PAAc catalytic membrane: sorption properties and reactive performance for biodiesel production. Renew Energy 116:250–257

    Article  CAS  Google Scholar 

  • Aransiola E, Ojumu T, Oyekola O, Madzimbamuto T, Ikhu-Omoregbe D (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297

    Article  CAS  Google Scholar 

  • Atadashi I, Aroua M, Aziz AA (2011) Biodiesel separation and purification: a review. Renew Energy 36(2):437–443

    Article  CAS  Google Scholar 

  • Balthasar W (1984) Hydrogen production and technology: today, tomorrow and beyond. Int J Hydrog Energy 9(8):649–668

    Article  CAS  Google Scholar 

  • Baroutian S, Aroua MK, Raman AAA, Sulaiman NMN (2010) Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling. Sep Purif Technol 76(1):58–63

    Article  CAS  Google Scholar 

  • Baroutian S, Aroua MK, Raman AAA, Sulaiman NM (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour Technol 102(2):1095–1102

    Article  CAS  Google Scholar 

  • Barreto RA (2018) Fossil fuels, alternative energy and economic growth. Econ Model 75:196–220

    Article  Google Scholar 

  • Basile A, Parmaliana A, Tosti S, Iulianelli A, Gallucci F, Espro C, Spooren J (2008) Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst. Catal Today 137(1):17–22

    Article  CAS  Google Scholar 

  • Bing W, Wei M (2019) Recent advances for solid basic catalysts: structure design and catalytic performance. J Solid State Chem 269:184–194

    Article  CAS  Google Scholar 

  • Bradford MC, Te M, Pollack A (2005) Monolith loop catalytic membrane reactor for Fischer–Tropsch synthesis. Appl Catal A Gen 283(1–2):39–46

    Article  CAS  Google Scholar 

  • Buonomenna M, Choi S, Drioli E (2010) Catalysis in polymeric membrane reactors: the membrane role. Asia Pac J Chem Eng 5(1):26–34

    Article  CAS  Google Scholar 

  • Buxbaum RE (2002) U.S. patent no. 6,461,408. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Cannilla C, Bonura G, Costa F, Frusteri F (2018) Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration. Appl Catal A Gen 566:121–129

    Article  CAS  Google Scholar 

  • Cao P, Tremblay AY, Dubé MA, Morse K (2007) Effect of membrane pore size on the performance of a membrane reactor for biodiesel production. Ind Eng Chem Res 46(1):52–58

    Article  CAS  Google Scholar 

  • Cao P, Dubé MA, Tremblay AY (2008a) High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 32(11):1028–1036

    Article  CAS  Google Scholar 

  • Cao P, Dubé MA, Tremblay AY (2008b) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87(6):825–833

    Article  CAS  Google Scholar 

  • Cerveró JM, Coca J, Luque S (2008) Production of biodiesel from vegetable oils. Grasas Aceites 59(1):76–83

    Google Scholar 

  • Chen H, Peng B, Wang D, Wang J (2007) Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Front Chem Eng China 1(1):11–15

    Article  Google Scholar 

  • Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects. Appl Catal B Environ 85(1–2):1–9

    CAS  Google Scholar 

  • Constantinou A, Ghiotto F, Lam KF, Gavriilidis A (2014) Stripping of acetone from water with microfabricated and membrane gas–liquid contactors. Analyst 139(1):266–272

    Article  CAS  Google Scholar 

  • Dalai A, Kulkarni M, Meher L (2006) Biodiesel productions from vegetable oils using heterogeneous catalysts and their applications as lubricity additives. In: EIC climate change technology, 2006 IEEE. IEEE, pp 1–8. https://doi.org/10.1109/EICCCC.2006.277228

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  • Demirbaş A (2002) Hydrogen production from biomass by the gasification process. Energy Sources 24(1):59–68

    Article  Google Scholar 

  • DeRoussel P, Khakhar D, Ottino J (2001) Mixing of viscous immiscible liquids. Part 2: overemulsification—interpretation and use. Chem Eng Sci 56(19):5531–5537

    Article  CAS  Google Scholar 

  • Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E (2006) Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind Eng Chem Res 45(9):3009–3014

    Article  CAS  Google Scholar 

  • Di Serio M, Cozzolino M, Tesser R, Patrono P, Pinzari F, Bonelli B, Santacesaria E (2007) Vanadyl phosphate catalysts in biodiesel production. Appl Catal A Gen 320:1–7

    Article  CAS  Google Scholar 

  • Dubé M, Tremblay A, Liu J (2007) Biodiesel production using a membrane reactor. Bioresour Technol 98(3):639–647

    Article  CAS  Google Scholar 

  • Edrisi SA, Abhilash PC (2016) Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario. Renew Sust Energ Rev 54:1537–1551

    Article  Google Scholar 

  • Enweremadu C, Mbarawa M (2009) Technical aspects of production and analysis of biodiesel from used cooking oil—a review. Renew Sust Energ Rev 13(9):2205–2224

    Article  CAS  Google Scholar 

  • Ersöz A (2008) Investigation of hydrocarbon reforming processes for micro-cogeneration systems. Int J Hydrog Energy 33(23):7084–7094

    Article  CAS  Google Scholar 

  • Espinoza R, Du Toit E, Santamaria J, Menendez M, Coronas J, Irusta S (2000) Use of membranes in Fischer-Tropsch reactors. In: Studies in surface science and catalysis, vol 130. Elsevier, pp 389–394. https://doi.org/10.1016/S0167-2991(00)80988-X

    Google Scholar 

  • Fremaux S, Beheshti S-M, Ghassemi H, Shahsavan-Markadeh R (2015) An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. Energy Convers Manag 91:427–432

    Article  CAS  Google Scholar 

  • Furuta S, Matsuhashi H, Arata K (2004) Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal Commun 5(12):721–723

    Article  CAS  Google Scholar 

  • Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A (2008) Co-current and counter-current configurations for ethanol steam reforming in a dense Pd–Ag membrane reactor. Int J Hydrog Energy 33(21):6165–6171

    Article  CAS  Google Scholar 

  • Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66

    Article  CAS  Google Scholar 

  • Goff MJ, Bauer NS, Lopes S, Sutterlin WR, Suppes GJ (2004) Acid-catalyzed alcoholysis of soybean oil. J Am Oil Chem Soc 81(4):415–420

    Article  CAS  Google Scholar 

  • Guan H-M, Chung T-S, Huang Z, Chng ML, Kulprathipanja S (2006) Poly (vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture. J Membr Sci 268(2):113–122

    Article  CAS  Google Scholar 

  • Guerreiro L, Castanheiro J, Fonseca I, Martin-Aranda R, Ramos A, Vital J (2006) Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catal Today 118(1–2):166–171

    Article  CAS  Google Scholar 

  • Guerreiro L, Pereira P, Fonseca I, Martin-Aranda R, Ramos A, Dias J, Oliveira R, Vital J (2010) PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal Today 156(3–4):191–197

    Article  CAS  Google Scholar 

  • Guettel R, Kunz U, Turek T (2008) Reactors for Fischer-Tropsch synthesis. Chem Eng Technol: Ind Chem-Plant Equip-Process Eng-Biotechnol 31(5):746–754

    Article  CAS  Google Scholar 

  • Gutiérrez-Antonio C, Ornelas MLS, Gómez-Castro FI, Hernández S (2018) Intensification of the hydrotreating process to produce renewable aviation fuel through reactive distillation. Chem Eng Process – Process Intensif 124:122–130

    Article  CAS  Google Scholar 

  • Hafeez S, Manos G, Al-Salem SM, Aristodemou E, Constantinou A (2018) Liquid fuel synthesis in microreactors. React Chem Eng 3(4):414–432. https://doi.org/10.1039/C8RE00040A

    Article  CAS  Google Scholar 

  • He J, Yoneyama Y, Xu B, Nishiyama N, Tsubaki N (2005) Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. Langmuir 21(5):1699–1702

    Article  CAS  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260

    Article  CAS  Google Scholar 

  • Jalan R, Srivastava V (1999) Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects. Energy Convers Manag 40(5):467–494

    Article  CAS  Google Scholar 

  • Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem Eng J 116(1):61–66

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367

    Article  CAS  Google Scholar 

  • Keskin A, Gürü M, Altiparmak D, Aydin K (2008) Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel. Renew Energy 33(4):553–557

    Article  CAS  Google Scholar 

  • Khassin AA, Sipatrov AG, Chermashetseva GK, Yurieva TM, Parmon VN (2005) Fischer–Tropsch synthesis using plug-through contactor membranes based on permeable composite monoliths. Selectivity control by porous structure parameters and membrane geometry. Top Catal 32(1–2):39–46

    Article  CAS  Google Scholar 

  • Kiss AA (2009) Novel process for biodiesel by reactive absorption. Sep Purif Technol 69(3):280–287

    Article  CAS  Google Scholar 

  • Kiss FE, Jovanović M, Bošković GC (2010) Economic and ecological aspects of biodiesel production over homogeneous and heterogeneous catalysts. Fuel Process Technol 91(10):1316–1320

    Article  CAS  Google Scholar 

  • Kleinert A, Feldhoff A, Schiestel T, Caro J (2006) Novel hollow fibre membrane reactor for the partial oxidation of methane. Catal Today 118(1–2):44–51

    Article  CAS  Google Scholar 

  • Knothe G, Krahl J, Van Gerpen J (2005) The biodiesel handbook. AOCS Press, Champaign, p 2005

    Book  Google Scholar 

  • Kouzu M, Hidaka J-s (2012) Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel 93:1–12

    Article  CAS  Google Scholar 

  • Licht F, Agra C (2007) World biodiesel markets: the outlook to 2010. Agra Informa Ltd, Kent

    Google Scholar 

  • Lipnizki F, Field RW, Ten P-K (1999) Pervaporation-based hybrid process: a review of process design, applications and economics. J Membr Sci 153(2):183–210

    Article  CAS  Google Scholar 

  • Liu X, He H, Wang Y, Zhu S, Piao X (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87(2):216–221

    Article  CAS  Google Scholar 

  • Lotero E, Goodwin JG, Bruce DA, Suwannakarn K, Liu Y, Lopez DE (2006) The catalysis of biodiesel synthesis. Catalysis 19(1):41–83

    CAS  Google Scholar 

  • Lu G, Da Costa JD, Duke M, Giessler S, Socolow R, Williams R, Kreutz T (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314(2):589–603

    Article  CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  • Maneerung T, Hidajat K, Kawi S (2016) Triple-layer catalytic hollow fiber membrane reactor for hydrogen production. J Membr Sci 514:1–14

    Article  CAS  Google Scholar 

  • Marbán G, Valdés-Solís T (2007) Towards the hydrogen economy? Int J Hydrog Energy 32(12):1625–1637

    Article  CAS  Google Scholar 

  • Marcano JGS, Tsotsis TT (2002) Catalytic membranes and membrane reactors. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/3527601988

  • Meher LC, Kulkarni MG, Dalai AK, Naik SN (2006) Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts. Eur J Lipid Sci Technol 108(5):389–397

    Article  CAS  Google Scholar 

  • Mejdell A, Jøndahl M, Peters T, Bredesen R, Venvik H (2009a) Effects of CO and CO2 on hydrogen permeation through a∼ 3 μm Pd/Ag 23 wt.% membrane employed in a microchannel membrane configuration. Sep Purif Technol 68(2):178–184

    Article  CAS  Google Scholar 

  • Mejdell A, Jøndahl M, Peters T, Bredesen R, Venvik H (2009b) Experimental investigation of a microchannel membrane configuration with a 1.4 μm Pd/Ag23 wt.% membrane—effects of flow and pressure. J Membr Sci 327(1–2):6–10

    Article  CAS  Google Scholar 

  • Mejdell A, Peters T, Stange M, Venvik H, Bredesen R (2009c) Performance and application of thin Pd-alloy hydrogen separation membranes in different configurations. J Taiwan Inst Chem Eng 40(3):253–259

    Article  CAS  Google Scholar 

  • Mueller U, Schubert M, Yaghi O, Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, vol 1. Wiley-VCH, Weinheim, pp 247–262

    Google Scholar 

  • Muradov N (1993) How to produce hydrogen from fossil fuels without CO2 emission. Int J Hydrog Energy 18(3):211–215

    Article  CAS  Google Scholar 

  • Ni M, Leung DY, Leung MK, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87(5):461–472

    Article  CAS  Google Scholar 

  • Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611

    Article  CAS  Google Scholar 

  • Pal P, Kumar R, Ghosh AK (2018) Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energy Convers Manag 171:371–383

    Article  CAS  Google Scholar 

  • Patil PD, Deng S (2009) Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88(7):1302–1306

    Article  CAS  Google Scholar 

  • Rahimpour M (2015) Membrane reactors for biodiesel production and processing. In: Membrane reactors for energy applications and basic chemical production. Elsevier, pp 289–312. https://doi.org/10.1016/C2013-0-16489-6

  • Rahimpour M, Bayat M (2011) Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int J Hydrog Energy 36(11):6616–6627

    Article  CAS  Google Scholar 

  • Ramadhas A, Jayaraj S, Muraleedharan C (2004) Use of vegetable oils as IC engine fuels—a review. Renew Energy 29(5):727–742

    Article  CAS  Google Scholar 

  • Rohde MP, Unruh D, Schaub G (2005a) Membrane application in Fischer− Tropsch synthesis to enhance CO2 hydrogenation. Ind Eng Chem Res 44(25):9653–9658

    Article  CAS  Google Scholar 

  • Rohde MP, Unruh D, Schaub G (2005b) Membrane application in Fischer–Tropsch synthesis reactors—overview of concepts. Catal Today 106(1–4):143–148

    Article  CAS  Google Scholar 

  • Rostrup-Nielsen J (2003) Encyclopedia of catalysis, vol 6. Wiley, New York

    Google Scholar 

  • Saleh J, Tremblay AY, Dubé MA (2010) Glycerol removal from biodiesel using membrane separation technology. Fuel 89(9):2260–2266

    Article  CAS  Google Scholar 

  • Sarkar B, Sridhar S, Saravanan K, Kale V (2010) Preparation of fatty acid methyl ester through temperature gradient driven pervaporation process. Chem Eng J 162(2):609–615

    Article  CAS  Google Scholar 

  • Shao P, Huang R (2007) Polymeric membrane pervaporation. J Membr Sci 287(2):162–179

    Article  CAS  Google Scholar 

  • Sharma Y, Singh B, Upadhyay S (2009) Response to the comments on “Advancements in development and characterization of biodiesel: A review”. Sharma YC, Singh B, Upadhyay SN. Fuel 2008; 87: 2355–73 by Clifford Jones. Fuel 4(88):768–769

    Article  CAS  Google Scholar 

  • Shi W, He B, Ding J, Li J, Yan F, Liang X (2010) Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production. Bioresour Technol 101(5):1501–1505

    Article  CAS  Google Scholar 

  • Shuit SH, Ong YT, Lee KT, Subhash B, Tan SH (2012) Membrane technology as a promising alternative in biodiesel production: a review. Biotechnol Adv 30(6):1364–1380

    Article  CAS  Google Scholar 

  • Singh AK, Fernando SD (2007) Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts. Chem Eng Technol: Ind Chem-Plant Equip-Process Engi-Biotechnol 30(12):1716–1720

    Article  CAS  Google Scholar 

  • Spallina V, Matturro G, Ruocco C, Meloni E, Palma V, Fernandez E, Melendez J, Tanaka AP, Sole JV, van Sint AM (2018) Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modelling and design. Energy 143:666–681

    Article  CAS  Google Scholar 

  • Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process Process Intensif 42(3):137–144

    Article  CAS  Google Scholar 

  • Steinberg M, Cheng HC (1989) Modern and prospective technologies for hydrogen production from fossil fuels. Int J Hydrog Energy 14(11):797–820

    Article  CAS  Google Scholar 

  • Tian Y, Demirel SE, Hasan MMF, Pistikopoulos EN (2018) An overview of process systems engineering approaches for process intensification: state of the art. Chem Eng Process Process Intensif 133:160–210

    Article  CAS  Google Scholar 

  • Tosti S, Basile A, Bettinali L, Borgognoni F, Gallucci F, Rizzello C (2008) Design and process study of Pd membrane reactors. Int J Hydrog Energy 33(19):5098–5105

    Article  CAS  Google Scholar 

  • Van Der Laan GP, Beenackers A (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev 41(3–4):255–318

    Article  Google Scholar 

  • Wang L, Yang J (2007) Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel 86(3):328–333

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Liu Y, Ou S, Tan Y, Tang S (2009) Refining of biodiesel by ceramic membrane separation. Fuel Process Technol 90(3):422–427

    Article  CAS  Google Scholar 

  • Wen M, Mori K, Kuwahara Y, An T, Yamashita H (2018) Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl Catal B Environ 218:555–569

    Article  CAS  Google Scholar 

  • Wilhelm D, Simbeck D, Karp A, Dickenson R (2001) Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol 71(1–3):139–148

    Article  CAS  Google Scholar 

  • Yusuf N, Kamarudin SK, Yaakub Z (2011) Overview on the current trends in biodiesel production. Energy Convers Manag 52(7):2741–2751

    Article  CAS  Google Scholar 

  • Zhang G, Jin W, Xu N (2018) Design and fabrication of ceramic catalytic Membrane Reactors for green chemical engineering applications. Engineering 4(6):848–860

    Article  CAS  Google Scholar 

  • Zhu W, Gora L, Van den Berg A, Kapteijn F, Jansen J, Moulijn J (2005) Water vapour separation from permanent gases by a zeolite-4A membrane. J Membr Sci 253(1–2):57–66

    Article  CAS  Google Scholar 

  • Zhu M, He B, Shi W, Feng Y, Ding J, Li J, Zeng F (2010) Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production. Fuel 89(9):2299–2304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achilleas Constantinou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hafeez, S., Al-Salem, S.M., Constantinou, A. (2020). Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits. In: Zhang, Z., Zhang, W., Lichtfouse, E. (eds) Membranes for Environmental Applications. Environmental Chemistry for a Sustainable World, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-33978-4_10

Download citation

Publish with us

Policies and ethics