Skip to main content

Application of Deep Learning Approaches in Igneous Rock Hyperspectral Imaging

  • Conference paper
  • First Online:
Book cover Proceedings of the 28th International Symposium on Mine Planning and Equipment Selection - MPES 2019 (MPES 2019)

Abstract

Hyperspectral imaging has been applied in remote sensing amongst other disciplines, success in these has triggered its extensive use. Hence, it comes as no surprise that we took advantage of this technology by conducting a study aimed at the spectral analysis of several igneous rocks, and to deduce the spectral signatures of each rock unit using neural networks. Through visual observations and comparisons of these spectral signatures, parameters such as band curvature(shape), tilt(position) and strength were used for lithological discrimination. Even with this said, there often exists similarities in rocks, which are rather difficult to differentiate by means of visual or graphical analysis. However, with numerous technologies making new waves in today’s era and artificial intelligence (AI) being at the forefront of these developments, it was best fitting to employ deep learning, often referred to as a subset of AI; to train/learn from these hyperspectral signatures with a goal aimed at classifying these rocks. Deep learning has networks such as the convolution neural network (CNN), which has algorithms that excel in feature representation from visual imagery; taking into account that the more data is fed into the training process and later used as a database for further training, the higher the future prediction accuracy. Gathered outcomes from the CNN show exceptionally high prediction accuracy capabilities of 96%; suggesting viable field and laboratory usage of these systems as a unit for mining and rock engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Jia, F., Lein, Y., Lin, J., Zhou, X., Lu, N.: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72–73, 303–315 (2016)

    Article  Google Scholar 

  • Xing, J., Li, K., Hu, W., Yuan, C., Ling, H.: Diagnosing deep learning models for high accuracy age estimation from a single image. Pattern Recogn. 66, 106–116 (2017)

    Article  Google Scholar 

  • Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps (2013)

    Google Scholar 

  • Kruse, F.A.: Mapping surface mineralogy using imaging spectrometry. Geomorphology 137, 41–56 (2012)

    Article  Google Scholar 

  • Meer, F.: The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 8, 3–17 (2006)

    Article  Google Scholar 

  • Pieters, C.M., et al.: The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 96(4), 500–505 (2009)

    CAS  Google Scholar 

  • Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)

    Article  Google Scholar 

  • Tompkins, S., Pieters, C.M.: Mineralogy of the lunar crust: results from Clementine. Meteor. Planet. Sci. 34, 25–41 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Bino Sinaice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinaice, B.B., Kawamura, Y., Kim, J., Okada, N., Kitahara, I., Jang, H. (2020). Application of Deep Learning Approaches in Igneous Rock Hyperspectral Imaging. In: Topal, E. (eds) Proceedings of the 28th International Symposium on Mine Planning and Equipment Selection - MPES 2019. MPES 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-33954-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33954-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33953-1

  • Online ISBN: 978-3-030-33954-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics