Skip to main content

Fractional-order Set-Point Weighted Controllers

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 264))

Abstract

In the first section of this chapter, a critical review of the PID controller and modified PID control strategies include set-point weighted PID, PI-PD, and fractional-order PID is presented. In the second section, the design of fractional-order set-point weighted PID (SWPI\(^\lambda \)D\(^\mu \)) controller will be discussed. Here, the control strategy will be developed for standard, industrial, parallel and ideal configurations of the controller. In the third section, the design of fractional-order PI-PD  (PI\(^\lambda \)-PD\(^\mu \)) controller in two single-loop control configurations are presented. In both cases, the conversion of controller parameters between various control strategies is presented. The next succeeding sections of the chapter will present the case studies on real-time pH neutralization and pressure processes for the implementation and evaluation of designed fractional-order set-point weighted PID control strategies. Finally, the last section will summarize the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, Q.G., Ye, Z., Cai, W.J., Hang, C.C.: PID Control for Multivariable Processes. Springer (2008)

    Google Scholar 

  2. Grimholt, C., Skogestad, S.: Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules. J. Process Control 70, 36–46 (2018)

    Article  Google Scholar 

  3. Haugen, F.: Comparing PI tuning methods in a real benchmark temperature control system. Model. Identif. Control 31(3), 79–91 (2010)

    Article  Google Scholar 

  4. Pachauri, N., Rani, A., Singh, V.: Bioreactor temperature control using modified fractional-order IMC-PID for ethanol production. Chem. Eng. Res. Des. 122, 97–112 (2017)

    Article  Google Scholar 

  5. Hermansson, A.W., Syafiie, S.: Model predictive control of pH neutralization processes: a review. Control Eng. Pract. 45, 98–109 (2015)

    Article  Google Scholar 

  6. Samad, T.: A survey on industry impact and challenges thereof [technical activities]. IEEE Control Syst. Mag. 37(1), 17–18 (2017)

    Article  Google Scholar 

  7. Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)

    Article  Google Scholar 

  8. Alfaro, V.M., Vilanova, R.: Conversion formulae and performance capabilities of two-degree-of-freedom PID control algorithms. In: Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation, Kraków, Poland, 17–21 Sept 2012

    Google Scholar 

  9. Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  10. Alfaro, V.M., Vilanova, R.: Model-Reference Robust Tuning of PID Controllers. Springer (2016)

    Google Scholar 

  11. Mudi, R.K., Dey, C.: Performance improvement of PI controllers through dynamic set-point weighting. ISA Trans. 50(2), 220–230 (2011)

    Article  Google Scholar 

  12. Visioli, A.: Practical PID Control. Springer (2006)

    Google Scholar 

  13. Alfaro, V.M., Vilanova, R.: Model-reference robust tuning of 2DoF PI controllers for first-and second-order plus dead-time controlled processes. J. Process Control 22(2), 359–374 (2012)

    Article  Google Scholar 

  14. Åström, K.J., Hägglund, T.: Advanced PID Control. ISA-The Instrumentation, Systems, and Automation Society (2006)

    Google Scholar 

  15. Azarmi, R., Tavakoli-Kakhki, M., Sedigh, A.K., Fatehi, A.: Analytical design of fractional order PID controllers based on the fractional set-point weighted structure: case study in twin rotor helicopter. Mechatronics 31, 222–233 (2015)

    Article  Google Scholar 

  16. De Oliveira, E.C., Tenreiro Machado, J.A.: A review of definitions for fractional derivatives and integral. Math. Probl. Eng. (2014)

    Google Scholar 

  17. Sahu, R.K., Panda, S., Rout, U.K.: DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity. Int. J. Electr. Power Energy Syst. 49, 19–33 (2013)

    Article  Google Scholar 

  18. Mantz, R.J.: A PI controller with dynamic set-point weighting for nonlinear processes. IFAC Proc. Vol. 45(3), 512–517 (2012)

    Article  Google Scholar 

  19. Ghosh, A., Krishnan, T.R., Tejaswy, P., Mandal, A., Pradhan, J.K., Ranasingh, S.: Design and implementation of a 2-DOF PID compensation for magnetic levitation systems. ISA Trans. 53(4), 1216–1222 (2014)

    Article  Google Scholar 

  20. Jin, Q.B., Liu, Q.: Analytical IMC-PID design in terms of performance/robustness tradeoff for integrating processes: from 2-Dof to 1-Dof. J. Process Control 24(3), 22–32 (2014)

    Article  MathSciNet  Google Scholar 

  21. Rajinikanth, V., Latha, K.: Setpoint weighted PID controller tuning for unstable system using heuristic algorithm. Arch. Control Sci. 22(4), 481–505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rodriguez-Martinez, A., Garduno-Ramirez, R.: 2 DOF fuzzy gain-scheduling PI for combustion turbogenerator speed control. IFAC Proc. Vol. 45(3), 276–281 (2012)

    Article  Google Scholar 

  23. Pachauri, N., Singh, V., Rani, A.: Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production. ISA Trans. 68, 235–250 (2017)

    Article  Google Scholar 

  24. Bianchi, F.D., Mantz, R.J., Christiansen, C.F.: Multivariable PID control with set-point weighting via BMI optimisation. Automatica 44(2), 472–478 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sahu, R.K., Panda, S., Rout, U.K., Sahoo, D.K.: Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller. Int. J. Electr. Power Energy Syst. 77, 287–301 (2016)

    Article  Google Scholar 

  26. Vilanova, R., Visioli, A.: PID Control in the Third Millennium. Springer (2012)

    Google Scholar 

  27. Papadopoulos, K.G.: PID Controller Tuning Using the Magnitude Optimum Criterion. Springer (2015)

    Google Scholar 

  28. Ingimundarson, A., Hägglund, T.: Performance comparison between PID and dead-time compensating controllers. J. Process Control 12(8), 887–895 (2002)

    Article  Google Scholar 

  29. Tan, K.K., Tang, K.Z., Su, Y., Lee, T.H., Hang, C.C.: Deadtime compensation via setpoint variation. J. Process Control 20(7), 848–859 (2010)

    Article  Google Scholar 

  30. Larsson, P., Hägglund, T.: Comparison between robust PID and predictive PI controllers with constrained control signal noise sensitivity. IFAC Proc. Vol. 45(3), 175–180 (2012)

    Article  Google Scholar 

  31. Kaya, I.: Obtaining controller parameters for a new PI-PD Smith predictor using autotuning. J. Process Control 13(5), 465–472 (2003)

    Article  Google Scholar 

  32. Kaya, I.: A PI-PD controller design for control of unstable and integrating processes. ISA Trans. 42(1), 111–121 (2003)

    Article  Google Scholar 

  33. Kaya, I.: PI-PD controllers for controlling stable processes with inverse response and dead time. Electr. Eng. 98(1), 55–65 (2016)

    Article  Google Scholar 

  34. Zou, H., Li, H.: Improved PI-PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit. ISA Trans. 67, 215–221 (2017)

    Article  Google Scholar 

  35. Tsai, K.I., Tsai, C.C.: Design and experimental evaluation of robust PID and PI-PD temperature controllers for oil-cooling machines. In: 9th World Congress on Intelligent Control and Automation, Taipei, Taiwan 21–25 June 2011

    Google Scholar 

  36. Padhy, P.K., Majhi, S.: Relay based PI-PD design for stable and unstable FOPDT processes. Comput. Chem. Eng. 30(5), 790–796 (2006)

    Article  Google Scholar 

  37. Padhy, S., Panda, S.: A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles. CAAI Trans. Intell. Technol. 2(1), 12–25 (2017)

    Article  Google Scholar 

  38. Padhy, S., Panda, S., Mahapatra, S.: A modified GWO technique based cascade PI-PD controller for AGC of power systems in presence of plug in electric vehicles. Int. J. Eng. Sci. Technol. 20(2), 427–442 (2017)

    Article  Google Scholar 

  39. Nema, S., Kumar Padhy, P.: Identification and cuckoo PI-PD controller design for stable and unstable processes. Trans. Inst. Meas. Control 37(6), 708–720 (2015)

    Article  Google Scholar 

  40. Majhi, M.P.V.S., Mahanta, C.: Fuzzy proportional integral-proportional derivative (PI-PD) controller. In: Proceedings of the 2004 American Control Conference, vol. 5, pp. 4028–4033, IEEE (2004)

    Google Scholar 

  41. Silva, G.J., Datta, A., Bhattacharyya, S.P.: PID Controllers for Time-Delay Systems. Springer (2007)

    Google Scholar 

  42. Liu, G.P., Daley, S.: Optimal-tuning nonlinear PID control of hydraulic systems. Control Eng. Pract. 8(9), 1045–1053 (2000)

    Article  Google Scholar 

  43. Su, Y.X., Sun, D., Duan, B.Y.: Design of an enhanced nonlinear PID controller. Mechatronics 15(8), 1005–1024 (2005)

    Article  Google Scholar 

  44. Ye, J.: Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot. Neurocomputing 71(7–9), 1561–1565 (2008)

    Article  Google Scholar 

  45. Prakash, J., Srinivasan, K.: Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor. ISA Trans. 48(3), 273–282 (2009)

    Article  Google Scholar 

  46. Xue, D., Chen, Y., Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. Siam (2007)

    Google Scholar 

  47. Adar, N.G., Kozan, R.: Comparison between real time PID and 2-DOF PID controller for 6-DOF robot arm. Acta Phys. Pol. A 130(1), 269–271 (2016)

    Article  Google Scholar 

  48. Alfaro, V.M., Vilanova, R.: Robust tuning of 2DoF five-parameter PID controllers for inverse response controlled processes. J. Process Control 23(4), 453–462 (2013)

    Article  Google Scholar 

  49. Alfaro, V.M., Vilanova, R.: Robust tuning and performance analysis of 2DoF PI controllers for integrating controlled processes. Ind. Eng. Chem. Res. 51(40), 13182–13194 (2012)

    Article  Google Scholar 

  50. Alfaro, V.M., Vilanova, R.: Simple robust tuning of 2DoF PID controllers from a performance/robustness trade-off analysis. Asian J. Control 15(6), 1700–1713 (2013)

    Article  MATH  Google Scholar 

  51. Vilanova, R., Alfaro, V.M., Arrieta, O.: Simple robust autotuning rules for 2-DoF PI controllers. ISA Trans. 51(1), 30–41 (2012)

    Article  Google Scholar 

  52. Araki, M., Taguchi, H.: Two-degree-of-freedom PID controllers. Int. J. Control Autom. Syst. 1(4), 401–411 (2003)

    Google Scholar 

  53. Li, Z., Liu, L., Dehghan, S., Chen, Y., Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90(6), 1165–1181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Margarita, R., Sergei, V.R., José, A.T.M., Juan, J.T.: Stability of fractional order systems. Math. Probl. Eng. (2013)

    Google Scholar 

  56. Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222(8), 1827–1846 (2013)

    Article  Google Scholar 

  58. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011)

    Google Scholar 

  59. Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific (2010)

    Google Scholar 

  60. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  61. Petrás, I.: Fractional derivatives, fractional integrals, and fractional differential equations in Matlab. Engineering education and research using MATLAB, IntechOpen (2011)

    Google Scholar 

  62. Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008)

    Article  Google Scholar 

  63. Chen, Y., Bhaskaran, T., Xue, D.: Practical tuning rule development for fractional order proportional and integral controllers. J. Comput. Nonlinear Dyn. 3(2), 021403 (2008)

    Article  Google Scholar 

  64. Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17(12), 1380–1387 (2009)

    Article  Google Scholar 

  65. Li, H., Luo, Y., Chen, Y.: A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2009)

    Article  Google Scholar 

  66. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21(1), 69–81 (2011)

    Article  MATH  Google Scholar 

  67. Sharma, R., Rana, K.P.S., Kumar, V.: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41(9), 4274–4289 (2014)

    Article  Google Scholar 

  68. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media (2010)

    Google Scholar 

  69. Luo, Y., Chen, Y.: Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica 45(10), 2446–2450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Luo, Y., Chao, H., Di, L., Chen, Y.: Lateral directional fractional order (PI) \(\alpha \) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. IET Control Theory Appl. 5(18), 2156–2167 (2011)

    Article  MathSciNet  Google Scholar 

  71. Luo, Y., Chen, Y.: Fractional-order [proportional derivative] controller for robust motion control: tuning procedure and validation. In: American Control Conference, St. Louis, Missouri, USA, 10–12 June 2009

    Google Scholar 

  72. Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(7), 823–831 (2010)

    Article  Google Scholar 

  73. Tenoutit, M., Maamri, N., Trigeassou, J.C.: An output feedback approach to the design of robust fractional PI and PID controllers. IFAC Proc. Vol. 44(1), 12568–12574 (2011)

    Article  Google Scholar 

  74. Lachhab, N., Svaricek, F., Wobbe, F., Rabba, H.: Fractional order PID controller (FOPID)-Toolbox. In: European Control Conference. Zurich, Switzerland, 17–19 July 2013

    Google Scholar 

  75. Tenoutit, M., Maamri, N., Trigeassou, J.C.: A time moments approach to the design of robust fractional PID controllers. In: 8th International Multi-conference on Systems, Signals & Devices, Sousse-Tunisia, 22–25 March 2011

    Google Scholar 

  76. Merrikh-Bayat, F., Mirebrahimi, N.: Introduction to the nonlinear PI\(^{\lambda } \)D\(^{\mu } \) control. In: 2011 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 25–27 Nov 2011

    Google Scholar 

  77. Tavakoli-Kakhki, M., Haeri, M.: Fractional order model reduction approach based on retention of the dominant dynamics: application in IMC based tuning of FOPI and FOPID controllers. ISA Trans. 50(3), 432–442 (2011)

    Article  Google Scholar 

  78. Bettayeb, M., Mansouri, R.: Fractional IMC-PID-filter controllers design for non integer order systems. J. Process Control 24(4), 261–271 (2014)

    Article  Google Scholar 

  79. Feliu-Batlle, V., Perez, R.R., Rodriguez, L.S.: Fractional robust control of main irrigation canals with variable dynamic parameters. Control Eng. Pract. 15(6), 673–686 (2007)

    Article  Google Scholar 

  80. Feliu-Batlle, V., Rivas-Perez, R., Castillo-Garcia, F.J.: Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool. Comput. Electron. Agric. 69(2), 185–197 (2009)

    Article  Google Scholar 

  81. El-Khazali, R.: Fractional-order PI\(^{\lambda } \)D\(^{\mu } \) controller design. Comput. Math. Appl. 66(5), 639–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  82. Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits 3(3), 416–424 (2013)

    Article  Google Scholar 

  83. Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3), 1–9 (2015)

    Article  MATH  Google Scholar 

  84. Jain, M., Rani, A., Pachauri, N., Singh, V., Mittal, A.P.: Design of fractional order 2-DOF PI controller for real-time control of heat flow experiment. Eng. Sci. Technol. Int. J. 22(1), 215–228 (2019)

    Article  Google Scholar 

  85. Pachauri, N., Singh, V., Rani, A.: Two degrees-of-freedom fractional-order proportional-integral-derivative-based temperature control of fermentation process. J. Dyn. Syst. Meas. Control-Trans. ASME 140(7), 071006 (2018)

    Article  Google Scholar 

  86. Angel, L., Viola, J.: Fractional order PID for tracking control of a parallel robotic manipulator type delta. ISA Trans. 79, 172–188 (2018)

    Article  Google Scholar 

  87. Sharma, R., Gaur, P., Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)

    Article  Google Scholar 

  88. Sondhi, S., Hote, Y.V.: Fractional order PID controller for load frequency control. Energy Conv. Manag. 85, 343–353 (2014)

    Article  Google Scholar 

  89. Zamani, A., Barakati, S.M., Yousofi-Darmian, S.: Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration. ISA Trans. 64, 56–66 (2016)

    Article  Google Scholar 

  90. Lamba, R., Singla, S.K., Sondhi, S.: Fractional order PID controller for power control in perturbed pressurized heavy water reactor. Nucl. Eng. Des. 323, 84–94 (2017)

    Article  Google Scholar 

  91. Kumar, N., Tyagi, B., Kumar, V.: Deregulated multiarea AGC scheme using BBBC-FOPID controller. Arab. J. Sci. Eng. 42(7), 2641–2649 (2017)

    Article  Google Scholar 

  92. Debbarma, S., Saikia, L.C., Sinha, N.: Automatic generation control using two degree of freedom fractional order PID controller. Int. J. Electr. Power Energy Syst. 58, 120–129 (2014)

    Article  Google Scholar 

  93. Tepljakov, A., Gonzalez, E.A., Petlenkov, E., Belikov, J., Monje, C.A., Petráš, I.: Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop. ISA Trans. 60, 262–273 (2016)

    Article  Google Scholar 

  94. Pan, I., Das, S.: Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. Int. J. Electr. Power Energy Syst. 51, 106–118 (2013)

    Article  Google Scholar 

  95. Kumar, G., Arunshankar, J.: Control of nonlinear two-tank hybrid system using sliding mode controller with fractional-order PI-D sliding surface. Comput. Electr. Eng. 71, 953–965 (2018)

    Article  Google Scholar 

  96. Tepljakov, A., Alagoz, B.B., Yeroglu, C., Gonzalez, E., HosseinNia, S.H., Petlenkov, E.: FOPID controllers and their industrial applications: a survey of recent results. IFAC-PapersOnLine 51(4), 25–30 (2018)

    Article  Google Scholar 

  97. Lurie, B.J.: Three-parameter tunable tilt-integral-derivative (TID) controller. US Patent 5,371,670, 6 Dec 1994

    Google Scholar 

  98. Abbisso, S., Caponetto, R., Diamante, O., Porto, D., Di Cola, E., Fortuna, L.: Non-integer order dynamic systems. US Patent 6,678,670, 13 Jan 2004

    Google Scholar 

  99. Bohannan, G., Hurst, S., Spangler, L.: Electrical component with fractional order impedance. US Patent 11/372,232, 30 Nov 2006

    Google Scholar 

  100. Chen, Y.: Tuning methods for fractional-order controllers. US Patent 7,599,752, 6 Oct 2009

    Google Scholar 

  101. Almadhoun, M.N., Elshurafa, A., Salama, K., Alshareef, H.: Fractional order capacitor. US Patent 9,305,706, 6 Apr 2016

    Google Scholar 

  102. Rana, K.P.S., Kumar, V., Mittra, N., Pramanik, N.: Implementation of fractional order integrator/differentiator on field programmable gate array. Alex. Eng. J. 55(2), 1765–1773 (2016)

    Article  Google Scholar 

  103. Muñiz-Montero, C., García-Jiménez, L.V., Sánchez-Gaspariano, L.A., Sánchez-López, C., González-Díaz, V.R., Tlelo-Cuautle, E.: New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)

    Article  MathSciNet  Google Scholar 

  104. Tolba, M.F., AboAlNaga, B.M., Said, L.A., Madian, A.H., Radwan, A.G.: Fractional order integrator/differentiator: FPGA implementation and FOPID controller application. AEU-Int. J. Electron. Commun. 98, 220–229 (2019)

    Article  Google Scholar 

  105. Tepljakov, A.: Fractional-Order Modeling and Control of Dynamic Systems. Springer (2017)

    Google Scholar 

  106. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R.: A comparative study of 2DOF PID and2DOF fractional order PID controllerson a class of unstable systems. Arch. Control Sci. 28(4), 635–682 (2018)

    Google Scholar 

  107. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43(6), 2687–2701 (2018)

    Article  Google Scholar 

  108. Bingi, K., Ibrahim, R., Karsiti, M.N., Chung, T.D., Hassan, S.M.: Optimal PID control of pH neutralization plant. In: 2nd IEEE International Symposium on Robotics and Manufacturing Automation. Universiti Teknologi PETRONAS, Malaysia 25–27 Sept 2016

    Google Scholar 

  109. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R.: Real-time control of pressure plant using 2DOF fractional-order PID controller. Arab. J. Sci. Eng. 44(3), 2091–2102 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Bingi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R. (2020). Fractional-order Set-Point Weighted Controllers. In: Fractional-order Systems and PID Controllers. Studies in Systems, Decision and Control, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-33934-0_2

Download citation

Publish with us

Policies and ethics