Skip to main content

Polyhydroxyalkanoates: The Future Bioplastics

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

Polyhydroxyalkanoates or PHAs are interesting biodegradable thermoplastics which are usually produced by bacteria intracellularly as an energy storage material under unfavourable growth condition. PHAs are attractive materials that can be developed as a bio-based commodity plastics. PHAs are also known as biocompatible polymers which can be used in various biomedical applications. This book chapter discusses about the production of PHAs by different types of bacteria using renewable resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743

    Article  CAS  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223

    Article  CAS  PubMed  Google Scholar 

  • Althuri A et al (2013) Microbial synthesis of poly-3-hydroxybutyrate and its application as targeted drug delivery vehicle. Bioresour Technol 145:290–296

    Article  CAS  PubMed  Google Scholar 

  • Bhubalan K, Rathi DN, Abe H, Iwata T, Sudesh K (2010) Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym Degrad Stab 30:1–7

    Google Scholar 

  • Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515

    Article  CAS  Google Scholar 

  • Chen QZ et al (2008) Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sc Eng R: Rep 59(1):1–37

    Article  CAS  Google Scholar 

  • Durner R, Zinn M, Witholt B, Egli T (2001) Accumulation of poly [(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Biotechnol Bioeng 72(3):278–288

    Article  CAS  PubMed  Google Scholar 

  • Ebnesajjad S (2012) Plastic films in food packaging: materials, technology and applications. Elsevier William Andrew Publishers, Oxford

    Google Scholar 

  • Filho LX, Olyveira GM, Basmaji P, Costa LMM (2013) Novel electrospun nanotholits/PHB scaffolds for bone tissue regeneration. J Nanosc Nanotechnol 13(7):4715–4719

    Article  CAS  Google Scholar 

  • Gahlawat G, Soni SK (2017) Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour Technol 243:492–501

    Article  CAS  PubMed  Google Scholar 

  • Gahlawat G, Srivastava AK (2012) Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization. Appl Biochem Biotechnol 168(5):1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Gahlawat G, Srivastava AK (2013) Development of a mathematical model for the growth associated polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Bioresour Technol 137:98–105

    Article  CAS  PubMed  Google Scholar 

  • Gahlawat G, Sengupta B, Srivastava AK (2012) Enhanced production of poly (3-hydroxybutyrate) in a novel airlift reactor with in situ cell retention using Azohydromonas australica. J Ind Microbiol Biotechnol 39(9):1377–1384

    Article  CAS  PubMed  Google Scholar 

  • García IL et al (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresour Technol 130:16–22

    Article  PubMed  CAS  Google Scholar 

  • Grage K et al (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10(4):660–669

    Article  CAS  PubMed  Google Scholar 

  • Guo-Qiang C, Jun X, Qiong W, Zengming Z, Kwok-Ping H (2001) Synthesis of copolyesters consisting of medium-chain-length β-hydroxyalkanoates by Pseudomonas stutzeri 1317. React Funct Polym 48:107–112

    Article  Google Scholar 

  • Hiramitsu M, Koyama N, Doi Y (1993) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Alcaligenes latus. Biotechnol Lett 15:461–464

    Google Scholar 

  • Khanna S, Srivastava AK (2007) Production of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) having a high hydroxyvalerate content with valeric acid feeding. J Ind Microbiol Biotechnol 34:457–461

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45(2):87–97

    PubMed  Google Scholar 

  • Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huang S, Zhang Y, Fuqian Xu (2014) Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. J Environ Sci 26:1453–1456

    Article  CAS  Google Scholar 

  • Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • López JA et al (2012) Biosynthesis of PHB from a new isolated Bacillus megaterium strain: outlook on future developments with endospore forming bacteria. Biotechnol Bioprocess Eng 17:250–258

    Article  CAS  Google Scholar 

  • Masaeli E et al (2013) Fabrication, characterization and cellular compatibility of poly (hydroxyalkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PloS one 8(2):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naranjo JM, Posada JA, Higuita JC, Cardona CA (2013) Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium. Bioresour Technol 133:38–44

    Article  CAS  PubMed  Google Scholar 

  • Narayanan A, Ramana KV (2012) Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3 Biotech 2:287–96

    Article  PubMed Central  Google Scholar 

  • Peña C et al (2014) Biotechnological strategies to improve production of microbial poly‐(3‐hydroxybutyrate): a review of recent research work. Microb Biotechnol 7(4):278–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  CAS  Google Scholar 

  • Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56(7):2093–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 83:137–146

    Article  Google Scholar 

  • Ricotti L et al (2012) Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater 7(3):1–11

    Article  PubMed  CAS  Google Scholar 

  • Tanamool V, Danvirutai P, Thanonkeo P, Imai T, Kaewkannetra P (2009) Production of poly-β-hydroxybutyric acid (PHB) from sweet sorghum juice by Alcaligenes eutrophus TISTR 1095 and Alcaligenes latus ATCC 29714 via batch fermentation. In: The 3rd international conference on fermentation technology for value added agricultural products (FerVAAP), pp 1–6

    Google Scholar 

  • Thirumala M, Reddy SV, Mahmood SK (2010) Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge. J Ind Microbiol Biotechnol 37:271–278

    Article  CAS  PubMed  Google Scholar 

  • Valappil SP et al (2007) Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus sp. J Biotechnol 127:475–487

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Bhatia Y, Valappil SP, Roy I (2002) A possible role of poly-3-hydroxybutyric acid in antibiotic production in Streptomyces. Arch Microbiol 179:66–69

    Article  CAS  PubMed  Google Scholar 

  • Vigneswari S, Nik LA, Majid MIA, Amirul AA (2010) Improved production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer using a combination of 1,4-butanediol and γ-butyrolactone. World J Microbiol Biotechnol 26:743–746

    Article  CAS  Google Scholar 

  • Wang F, Lee SY (1997) Poly (3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol 63:3703–3706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. In: Doi Y, Steinbüchel A (eds) Biopolymers polyesters III—applications, vol 4. Wiley-VCH, Weinhein, pp 1–38

    Google Scholar 

  • Wong AL, Chua H, Yu PH (2000) Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes. Appl Biochem Biotechnol 86:843–857

    Article  Google Scholar 

  • Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218

    Article  CAS  PubMed  Google Scholar 

  • Yu ST, Lin CC, Too JR (2005) PHBV production by Ralstonia eutropha in a continuous stirred tank reactor. Process Biochem 40:2729–2734

    Article  CAS  Google Scholar 

  • Zafar M, Kumar S, Kumar S, Dhiman AK (2012a) Artificial intelligence based modeling and optimization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: a genetic algorithm paradigm. Bioresour Technol 104:631–641

    Article  CAS  PubMed  Google Scholar 

  • Zafar M, Kumar S, Kumar S, Dhiman AK (2012b) Modeling and optimization of poly (3hydroxybutyrate-co-3hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes. J Ind Microbiol Biotechnol 39(7):987–1001

    Article  CAS  PubMed  Google Scholar 

  • Zúniga C, Morales M, Borgne SL, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882

    Article  PubMed  CAS  Google Scholar 

  • Zúniga C, Morales M, Revah S (2013) Polyhydroxyalkanoates accumulation by Methylobacterium organophilum CZ-2 during methane degradation using citrate or propionate as cosubstrates. Bioresour Technol 129:686–689

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Gahlawat .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gahlawat, G. (2019). Polyhydroxyalkanoates: The Future Bioplastics. In: Polyhydroxyalkanoates Biopolymers. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-33897-8_2

Download citation

Publish with us

Policies and ethics