Skip to main content

Introduction and Background

  • Chapter
  • First Online:
Polyhydroxyalkanoates Biopolymers

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

  • 615 Accesses

Abstract

The usage of synthetic plastics such as polyethylene and polypropylene was initiated by mankind to enhance the quality and comfort of life without realizing their ubiquitous nature. Now they have become an essential part of contemporary life and are being used increasingly in different industrial applications due to their unique characteristics of strength, durability and resistance to chemicals. The high molecular weight appears to be the main reason for the resistance of these plastics to biodegradation and perseverance in soil for a longer period of time. This non-biodegradable nature of synthetic plastics and dependency on fossil fuels for their production have driven the search for alternative sustainable biotechnological solution with lower environmental impact. In this regard, Polyhydroxyalkanoates (PHAs) are considered as best alternatives as they are produced by fermentation of renewable feedstock and are completely biodegradable. However, despite the considerable research work on PHAs, only limited success has been achieved so far. The main bottleneck in successful utilization of PHAs is their high cost of production. This book chapter presents general introduction on PHAs and their types, and how they came into existence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743

    CAS  Google Scholar 

  • Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53

    CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472

    Google Scholar 

  • Burdon KL, Stokes JC, Kimbrough CE (1942) Studies of the common aerobic spore-forming bacilli: I. Staining for fat with Sudan black B-safranin. J Bacteriol 43(6):717

    Google Scholar 

  • Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5(9):246–250

    Article  CAS  Google Scholar 

  • Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515

    Article  CAS  Google Scholar 

  • Cavalheiro JMBT et al (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397

    Article  CAS  PubMed  Google Scholar 

  • De Smet M et al (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154(2):870–878

    PubMed  PubMed Central  Google Scholar 

  • Divya G, Archana T, Manzano RA (2013) Polyhydroxy alkonates—a sustainable alternative to petro-based plastics. J Petrol Environ Biotechnol 4:1–8

    Article  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH Publishers, New York

    Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828

    Article  CAS  Google Scholar 

  • Ebnesajjad S (2012) Plastic films in food packaging: materials, technology and applications. Elsevier William Andrew Publishers, Oxford

    Google Scholar 

  • Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45(1):71–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth W, Hayward A, Roberts J (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 182(4638):800–801

    Article  CAS  PubMed  Google Scholar 

  • Fukui T, Doi Y (1997) Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179(15):4821–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme a hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180(3):667–673

    Google Scholar 

  • Fukui T, Yokomizo S, Kobayashi G (1999) Co-expression of polyhydroxyalkanoate synthase and (R)‐enoyl‐CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in escherichia coli. FEMS Microbiol Lett 170(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • García IL et al (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresour Technol 130:16–22

    Article  PubMed  CAS  Google Scholar 

  • Genser KF, Renner G, Schwab H (1998) Molecular cloning, sequencing and expression in Escherichia coli of the poly(3-hydroxyalkanoate) synthesis genes from Alcaligenes latus DSM1124. J Biotechnol 64(2–3):123–135

    Article  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56(11):3354–3359

    Google Scholar 

  • Hoffmann N, Steinbüchel A, Rehm BH (2000a) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54(5):665–670

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann N, Steinbüchel A, Rehm BH (2000b) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184(2):253–259

    Article  CAS  PubMed  Google Scholar 

  • Holmes P (1985) Applications of PHB-a microbially produced biodegradable thermoplastic. Phys Technol 16(1):32

    Article  CAS  Google Scholar 

  • Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Lett 103(2–4):251–255

    CAS  Google Scholar 

  • Huijberts G, de Rijk TC, de Waard P, Eggink G (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. J Bacteriol 176(6):1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijberts G, Eggink G, De Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly (3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58(2):536–544

    Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55(8):1949–1954

    Google Scholar 

  • Johnstone B (1990) A throw away answer. Far East Econ Rev 147:62–63

    Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619

    Article  CAS  Google Scholar 

  • Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38

    Article  CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G and Witholt B (1988) Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932

    Google Scholar 

  • Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782

    CAS  Google Scholar 

  • Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65(3):363–368

    Article  CAS  PubMed  Google Scholar 

  • Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2(2):31–57

    Google Scholar 

  • Loo CY et al (2005) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27(18):1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Macrae R, Wilkinson J (1958) Poly-β-hyroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Gen Appl Microbiol 19(1):210–222

    Article  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiol Mol Biol Rev 63(1):21–53

    Google Scholar 

  • Ostle AG, Holt J (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44(1):238–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Page WJ, Knosp O (1989) Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55(6):1334–1339

    Google Scholar 

  • Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97(11):1296–1301

    Article  CAS  PubMed  Google Scholar 

  • Pedrós-Alió C, Mas J, Guerrero R (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143(2):178–184

    Article  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  CAS  Google Scholar 

  • Reddy MV et al (2016) Production of poly-3-hydroxybutyrate (P3HB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 215:155–162

    Article  CAS  Google Scholar 

  • Rehm BH, Krüger N, Steinbüchel A (1998) A New Metabolic Link between Fatty Acid de NovoSynthesis and Polyhydroxyalkanoic Acid Synthesis The PHAG Gene from Pseudomonas Putida kt2440 Encodes A 3-Hydroxyacyl-Acyl Carrier Protein-Coenzyme A Transferase. J Biol Chem 273(37):24044–24051

    Google Scholar 

  • Rehm BH, Mitsky TA and Steinbüchel A (2001) Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Appl Environ Microbiol 67(7):3102–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinecke F, Steinbuechel A (2008) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotecAdd hnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16(1–2):91–108

    Google Scholar 

  • Senior P, Dawes E (1971) Poly-beta-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 125:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46(3):350–357

    Article  CAS  PubMed  Google Scholar 

  • Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly (β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987

    Google Scholar 

  • Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Eng J 16(2):81–96

    Article  CAS  Google Scholar 

  • Sudesh K (2000) Molecular design and biosynthesis of biodegradable polyesters. Polym Adv Technol 11(8–12):865–872

    Article  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  • Sudesh K, Doi Y (2005) Polyhydroxyalkanoates. Handbook of biodegradable polymers, pp 219–256

    Google Scholar 

  • Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Philosophical Trans Royal Soc B: Biological Sci 364(1526):2079–2096

    Article  CAS  Google Scholar 

  • Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philosophical Trans Royal Soc B: Biol Sci 364(1526):2153–2166

    Article  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56(11):3360–3367

    Google Scholar 

  • Tokiwa Y, Ugwu CU (2007) Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol 132(3):264–272

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94(6):579–584

    Article  CAS  PubMed  Google Scholar 

  • Valentin H, Dennis D (1996) Metabolic pathway for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62(2):372–379

    Google Scholar 

  • Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R (2015) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175(6):3120–3132

    Article  CAS  PubMed  Google Scholar 

  • Verlinden RA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Wallen LL, Rohwedder WK (1974) Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol 8(6):576–579

    Article  CAS  Google Scholar 

  • Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2013) Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS ONE 8(4):1–8

    Article  Google Scholar 

  • Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  • Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. Biopolymers 4:91–127

    CAS  Google Scholar 

  • Williamson D, Wilkinson J (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus Species. J Gen Appl Microbiol 19(1):198–209

    Article  CAS  Google Scholar 

  • Williams DR, Anderson AJ, Dawes EA, Ewing DF (1994) Production of a co-polyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from succinic acid by Rhodococcus ruber: biosynthetic considerations. Appl Microbiol Biotechnol 40(5):717–723

    Article  CAS  Google Scholar 

  • Yu PH, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454

    Article  Google Scholar 

  • Zhao K, Deng Y, Chun CJ, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Gahlawat .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gahlawat, G. (2019). Introduction and Background. In: Polyhydroxyalkanoates Biopolymers. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-33897-8_1

Download citation

Publish with us

Policies and ethics