Skip to main content

Multilevel Converter for Renewable Energy System

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 98))

Abstract

Multilevel converters are very much involved in application which is high as well as medium voltage applications. They are utilised to inject voltages into grid, which is considered as an example of infinite voltage application, where the reliability of converters plays a significant role. More the level of multilevel converter has, more the chances of sinusoidal output voltages. Hybrid topologies of MLIs, which are capable of handling switching stresses, utilisation of DC sources, capacitor balancing and capacitor current ripple and losses are discussed. In order to maintain the reliable network, auxiliary switches are used. These are usually comprised of diodes, bridges or bi-directional switches. This paper also focuses on the full utilisation of DC link capacitor for multilevel inverter and few new topologies along with its mode of operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Samuel, P., Gupta, R., Chandra, D.: Grid Interface of wind power with large split-winding alternator using cascaded multilevel inverter. IEEE Trans. Energy Convers. 26(1), 299–309 (2011)

    Article  Google Scholar 

  2. Rodriguez, J., Lai, J.S., Peng, F.Z.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  3. Mekhilef, S., Kadir, M.N.A.: Voltage control of three-stage hybrid multilevel inverter using vector transformation. IEEE Trans. Power Electron. 25(10), 2599–2606 (2010)

    Article  Google Scholar 

  4. Peng, F.Z.: A generalized multilevel inverter topology with self-voltage balancing. IEEE Trans. Ind. Appl. 37(2), 611–618 (2001)

    Article  Google Scholar 

  5. Barbosa, P., Steimer, P., Steinke, J., Meysenc, L., Winkelnkemper, M., Celanovic, N.: Active neutral-point-clamped multilevel converters. In: IEEE 36th power electronics specia- lists Conference PESC 2005, pp. 2296–301 (2005)

    Google Scholar 

  6. Kala, P., Arora, S.: A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renew. Sustain. Energy Rev. 76, 905–993 (2017)

    Article  Google Scholar 

  7. Sivakumar, K.: A fault-tolerant single-phase five-level inverter for grid-independent PV systems. In: IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7569–7577, December 2015

    Google Scholar 

  8. Richardeau, F., Pham, T.T.L.: Reliability calculation of multilevel converters: theory and applications. IEEE Trans. Ind. Electron. 60(10), 4225–4233 (2013)

    Article  Google Scholar 

  9. Siwakoti, Y.P., Mahajan, A., Liese, S.: Active utilization of a full DC-link voltage in multilevel converter. In: 2018 IEEE International Telecommunications Energy Conference (INTELEC), Turin, pp. 1–5 (2018)

    Google Scholar 

  10. Katebi, R., He, J., Weise, N.: Investigation of fault-tolerant capabilities in an advanced three-level active T-type converter. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 446–457 (2019)

    Article  Google Scholar 

  11. Samadaei, E., Kaviani, M., Bertilsson, K.: A 13-levels module (K-Type) with two DC sources for multilevel inverters. IEEE Trans. Ind. Electron. 66(7), 5186–5196 (2019)

    Article  Google Scholar 

  12. Choi, J., Kang, F.: Seven-Level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source. IEEE Trans. Ind. Electron. 62(6), 3448–3459 (2015)

    Google Scholar 

  13. Choupan, R., Golshannavaz, S., Nazarpour, D., Barmala, M.: A new structure for multilevel inverters with fault-tolerant capability against open circuit faults. Electr. Power Syst. Res. 168, 105–116 (2019)

    Article  Google Scholar 

  14. Sathik, M.J., Bhatnagar, K., Sandeep, N., Blaabjerg, F.: An improved seven-level PUC inverter topology with voltage boosting. IEEE Trans. Circ. Syst. II Express Briefs (2019)

    Google Scholar 

  15. Raman, S.R., Cheng, K.W.E., Ye, Y.: Multi-input switched-capacitor multilevel inverter for high-frequency AC power distribution. IEEE Trans. Power Electron. 33(7), 5937–5948 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anand, V., Singh, V. (2020). Multilevel Converter for Renewable Energy System. In: Smys, S., Bestak, R., Rocha, Á. (eds) Inventive Computation Technologies. ICICIT 2019. Lecture Notes in Networks and Systems, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-33846-6_50

Download citation

Publish with us

Policies and ethics