Skip to main content

Simulation Model of Internal Transportation at a Container Terminal to Determine the Number of Vehicles Required

  • Conference paper
  • First Online:
Inventive Computation Technologies (ICICIT 2019)

Abstract

The operating efficiency of a container terminal is largely determined by the number of vehicles available for internal transportation. This article presents a discrete event simulation model, combined with scenario analysis, to help determine the adequate number of vehicles to satisfy the demand for internal container movements at a port in the city of Barranquilla. The model assesses the container movements performed by Straddle Carriers (SC) between the container loading/unloading dock and the storage and inspection yards. The results of the experiments performed indicate that when demand increases by more than 10%, the number of vehicles currently available may be insufficient to cover operating requirements in an efficient manner. The simulation model tests the effectiveness of a set of strategies that may be implemented at the studied terminal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlo, H.J., Vis, I.F.A., Roodbergen, K.J.: Transport operations in container terminals: Literature overview, trends, research directions and classification scheme. Eur. J. Oper. Res. 236(1), 1–13 (2014)

    Article  Google Scholar 

  2. Dkhil, H., Yassine, A., Chabchoub, H.: Multi-objective optimization of the integrated problem of location assignment and straddle carrier scheduling in maritime container terminal at import. J. Oper. Res. Soc. 69(2), 247–269 (2018)

    Article  Google Scholar 

  3. Canonaco, P., Legato, P., Mazza, R.M., Musmanno, R.: A queuing network model for the management of berth crane operations. Comput. Oper. Res. 35(8), 2432–2446 (2008)

    Article  Google Scholar 

  4. Zehendner, E., Rodriguez-Verjan, G., Absi, N., Dauzère-Pérès, S., Feillet, D.: Optimized allocation of straddle carriers to reduce overall delays at multimodal container terminals. Flex. Serv. Manuf. J. 27(2–3), 300–330 (2015)

    Article  Google Scholar 

  5. Zeng, Q., Yang, Z.: Integrating simulation and optimization to schedule loading operations in container terminals. Comput. Oper. Res. 36(6), 1935–1944 (2009)

    Article  Google Scholar 

  6. Al-Dhaheri, N., Jebali, A., Diabat, A.: A simulation-based Genetic Algorithm approach for the quay crane scheduling under uncertainty. Simul. Model. Pract. Theor. 66, 122–138 (2016)

    Article  Google Scholar 

  7. Soriguera, F., Robuste, F., Juanola, R., Lopez-Pita, A.: optimization of handling equipment in the container terminal of the port of Barcelona, Spain. Transp. Res. Rec.: J. Transp. Res. Board 1963, 44–51 (2006)

    Article  Google Scholar 

  8. Legato, P., Mazza, R.M.: A simulation model for designing straddle carrier-based container terminals. In: 2017 Winter Simulation Conference (WSC), pp. 3138–3149. IEEE (2017)

    Google Scholar 

  9. Wiese, J., Suhl, L., Kliewer, N.: An analytical model for designing yard layouts of a straddle carrier based container terminal. Flex. Serv. Manuf. J. 25(4), 466–502 (2013)

    Article  Google Scholar 

  10. Orejuela Cabrera, J.P., Flórez González, A.: Balanceo de líneas de producción en la industria farmacéutica mediante Programación por metas. INGE CUC 15(1), 109–122 (2019)

    Article  Google Scholar 

  11. Romero-Conrado, A., Coronado-Hernandez, J., Rius-Sorolla, G., García-Sabater, J.: A tabu list-based algorithm for capacitated multilevel lot-sizing with alternate bills of materials and co-production environments. Appl. Sci. 9(7), 1464 (2019)

    Article  Google Scholar 

  12. Varela, N., Fernandez, D., Pineda, O., Viloria, A.: Selection of the best regression model to explain the variables that influence labor accident case electrical company. J. Eng. Appl. Sci. 12(1), 2956–2962 (2017)

    Google Scholar 

  13. Banks, J., Carson II, J.S., Nelson, B.L,. Nicol, D.M.: Discrete-Event System Simulation, 5th edn. Pearson, London (2014)

    Google Scholar 

  14. Law, A.M.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill, New York (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uribe-Martes, C.J., Rivera-Restrepo, D.X., Filippo, A.BD., Silva, J. (2020). Simulation Model of Internal Transportation at a Container Terminal to Determine the Number of Vehicles Required. In: Smys, S., Bestak, R., Rocha, Á. (eds) Inventive Computation Technologies. ICICIT 2019. Lecture Notes in Networks and Systems, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-33846-6_100

Download citation

Publish with us

Policies and ethics