Skip to main content

Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Abstract

With the increasing use of CT in diagnostic imaging, reducing the clinical radiation dose is necessary for ensuring patient safety. Reduced radiation dose results in quantum noise which adversely affects image quality and diagnostic value. Moreover, obtaining high quality images to act as reference images for image quality assessment is difficult. Therefore, automatic no-reference quality assessment of reconstructed images is necessary to preserve diagnostic image quality, while controlling radiation dose. In this work, we investigate the use of a deep convolutional neural network to measure CT image quality. Our developed metric shows concordance with conventional metrics of CT image quality (\(|r|>\) 0.75, \(|\rho |>\) 0.75). Our metric ranks images in terms of quality highly accurately (\(\tau \) = 0.98). We measure noise textures and levels not present in our training dataset. Furthermore, the proposed metric shows the improved quality in high dose iteratively reconstructed images, and the reduced quality in low dose images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, G.H., Yang, C.L., Xie, S.L.: Gradient-based structural similarity for image quality assessment. In: International Conference on Image Processing, pp. 2929–2932, no. 1 (2006)

    Google Scholar 

  2. Galdran, A., Costa, P., Bria, A., Araujo, T., Mendonca, A.M., Campilho, A.: A no-reference quality metric for retinal vessel tree segmentation. In: Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 1, pp. 82–90 (2018). https://doi.org/10.1007/978-3-030-00928-1

    Google Scholar 

  3. Kijewski, M.F., Judy, P.F.: The noise spectrum of CT images. Phys. Med. Biol. 32, 565–575 (1987)

    Article  Google Scholar 

  4. Kim, J., Nguyen, A.D., Lee, S.: Deep CNN-based blind image quality predictor. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 11–24 (2019). https://doi.org/10.1109/TNNLS.2018.2829819

    Article  Google Scholar 

  5. Kingma, D.P., Bai, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015). https://doi.org/10.1063/1.4902458

  6. Li, C., Bovik, A.C.: Content-partitioned structural similarity index for image quality assessment. Signal Process. Image Commun. 25(7), 517–526 (2010). https://doi.org/10.1016/j.image.2010.03.004

    Article  Google Scholar 

  7. Liu, P., Li, Y., El Basha, M.D., Fang, R.: Neural network evolution using expedited genetic algorithm for medical image denoising. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 12–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_2

    Chapter  Google Scholar 

  8. Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26(2), 1004–1016 (2017). https://doi.org/10.1109/TIP.2016.2631888

    Article  MathSciNet  MATH  Google Scholar 

  9. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning, vol. 30, p. 6 (2013)

    Google Scholar 

  10. Maier, A., Fahrig, R.: GPU denoising for computed tomography. In: Xun, J., Jiang, S. (eds.) Graphics Processing Unit-Based High Performance Computing in Radiation Therapy, 1st edn, pp. 113–128. CRC Press, Boca Raton (2015)

    Google Scholar 

  11. Oppelt, A.: Noise in computed tomography. In: Aktiengesselschaft, S. (ed.) Imaging Systems for Medical Diagnostics, 2 edn., chap. 13.1.4.2, p. 996. Publicis Corporate Publishing (2005). https://doi.org/10.1145/2505515.2507827

  12. Ramirez-Giraldo, J.C., Grant, K.L., Raupach, R.: ADMIRE: Advanced Modeled Iterative Reconstruction (2015). https://www.siemens-healthineers.com/computed-tomography/technologies-innovations/admire

  13. Renieblas, G.P., del Castillo, E.G., Gómez-Leon, N., González, A.M., Nogués, A.T.: Structural similarity index family for image quality assessment in radiological images. J. Med. Imaging 4(3), 035501–1–11 (2017). https://doi.org/10.1117/1.jmi.4.3.035501

    Article  Google Scholar 

  14. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3441–3452 (2006). https://doi.org/10.1109/TPCG.2004.1314471

    Article  Google Scholar 

  15. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: International Conference on Learning Representations, pp. 1–8 (2013)

    Google Scholar 

  16. Stierstorfer, K., Rauscher, A., Boese, J., Bruder, H., Schaller, S., Flohr, T.: Weighted FBP - a simple approximated 3D FBP algorithm for multislice spiral CT with good dose usage for arbitrary pitch. Phys. Med. Biol. 49(11), 2209–2218 (2004). https://doi.org/10.1088/0031-9155/49/11/007

    Article  Google Scholar 

  17. Verdun, F.R., et al.: Image quality in CT: from physical measurements to model observers. Physica Medica 31(8), 823–843 (2015). https://doi.org/10.1016/j.ejmp.2015.08.007

    Article  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Member, S., Simoncelli, E.P., Member, S.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  19. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402 (2003). https://doi.org/10.1042/BJ20071051

    Article  Google Scholar 

  20. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University (1974). https://doi.org/10.1.1.41.8085

  21. Winklehner, A., et al.: Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur. Radiol. 21(12), 2521–2526 (2011). https://doi.org/10.1007/s00330-011-2227-y

    Article  Google Scholar 

  22. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017). https://doi.org/10.1109/TMI.2017.2708987

    Article  Google Scholar 

  23. Xu, Q., Zhang, L., Yu, H., Mou, X., Hsieh, J., Wang, G.: Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 9(31), 1682–1697 (2012). https://doi.org/10.1016/j.pmrj.2014.02.014.Lumbar

    Article  Google Scholar 

  24. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network With Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018). https://doi.org/10.1109/TMI.2018.2827462

    Article  MathSciNet  Google Scholar 

  25. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–595, no. 1 (2018). https://doi.org/10.1109/CVPR.2018.00068

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Patwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patwari, M., Gutjahr, R., Raupach, R., Maier, A. (2019). Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics