Skip to main content

Electron-Light Interactions

  • Chapter
  • First Online:
Near-Field-Mediated Photon–Electron Interactions

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 228))

  • 780 Accesses

Abstract

Swift electrons can undergo inelastic interactions with single electrons as well as collective electron excitations within the sample, such as plasmon and phonon polaritons , as a result of which they lose energy (Garcia de Abajo in Rev. Mod. Phys. 82:209–275, 2010 [1]). Within the classical formalism, EEL spectra are theoretically rationalized by a simple but intuitive interpretation that has a direct correspondence with first principles, demanding that all inelastic signals are collected (Ritchie and Howie, in Philos. Mag. A 58:753–767, 1988 [2].

Portions of the text of this chapter have been re-published with permission from [3], Copyright 2017 IOP Publishing Ltd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.J.G. de Abajo, Optical excitations in electron microscopy (in English). Rev. Mod. Phys. 82(1), 209–275 (2010). https://doi.org/10.1103/revmodphys.82.209

    Article  ADS  Google Scholar 

  2. R.H. Ritchie, A. Howie, Inelastic-scattering probabilities in scanning-transmission electron-microscopy (in English). Philos. Mag. A 58(5), 753–767 (1988). [Online]. Available: < Go to ISI > ://WOS:A1988Q932100005

    Google Scholar 

  3. N. Talebi, Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. J. Opt. UK 19(10), 103001 (2017). https://doi.org/10.1088/2040-8986/aa8041

    Article  ADS  Google Scholar 

  4. F.J.G. de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy (in English). Phys. Rev. Lett. 100(10), 106804 (2008). https://doi.org/10.1103/physrevlett.100.106804

    Article  ADS  Google Scholar 

  5. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the visible. Nano Lett. 12(10), 5239–5244 (2012). https://doi.org/10.1021/nl302418n

    Article  ADS  Google Scholar 

  6. F.P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Universal dispersion of surface plasmons in flat nanostructures (in English). Nat. Commun. 5, 3604 (2014). https://doi.org/10.1038/ncomms4604

    Article  ADS  Google Scholar 

  7. S.J. Barrow, D. Rossouw, A.M. Funston, G.A. Botton, P. Mulvaney, Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy (in English). Nano Lett. 14(7), 3799–3808 (2014). https://doi.org/10.1021/nl5009053

    Article  ADS  Google Scholar 

  8. F.P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Dark plasmonic breathing modes in silver nanodisks (in English). Nano Lett. 12(11), 5780–5783 (2012). https://doi.org/10.1021/nl3030938

    Article  ADS  Google Scholar 

  9. J. Nelayah et al., Mapping surface plasmons on a single metallic nanoparticle (in English). Nat. Phys. 3(5), 348–353 (2007). https://doi.org/10.1038/nphys575

    Article  Google Scholar 

  10. D. DeJarnette, D.K. Roper, Electron energy loss spectroscopy of gold nanoparticles on graphene (in English). J. Appl. Phys. 116(5), 054313 (2014). https://doi.org/10.1063/1.4892620

    Article  ADS  Google Scholar 

  11. O. Nicoletti, M. Wubs, N.A. Mortensen, W. Sigle, P.A. van Aken, P.A. Midgley, Surface plasmon modes of a single silver nanorod: an electron energy loss study (in English). Opt. Express 19(16), 15371–15379 (2011). https://doi.org/10.1364/Oe.19.015371

    Article  ADS  Google Scholar 

  12. G. Boudarham, M. Kociak, Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes (in English). Phys. Rev. B 85(24), 245447 (2012). https://doi.org/10.1103/physrevb.85.245447

    Article  ADS  Google Scholar 

  13. N. Talebi, B. Ögüt, W. Sigle, R. Vogelgesang, P.A. van Aken, On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities. Appl. Phys. A 116(3), 947–954 (2014). https://doi.org/10.1007/s00339-014-8532-y

    Article  ADS  Google Scholar 

  14. B. Ogut, R. Vogelgesang, W. Sigle, N. Talebi, C.T. Koch, P.A. van Aken, Hybridized metal slit eigenmodes as an illustration of Babinet’s principle (in English). ACS Nano 5(8), 6701–6706 (2011). https://doi.org/10.1021/nn2022414

    Article  Google Scholar 

  15. R. Walther et al., Coupling of surface-plasmon-polariton-hybridized cavity modes between submicron slits in a thin gold film (in English). Acs Photonics 3(5), 836–843 (2016). https://doi.org/10.1021/acsphotonics.6b00045

    Article  Google Scholar 

  16. A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, J. Zyss, Plasmonic coupling between metallic nanocavities (in English). J. Opt. UK 16(11), 114012 (2014). https://doi.org/10.1088/2040-8978/16/11/114012

    Article  ADS  Google Scholar 

  17. L. Gu et al., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets (in English). Phys. Rev. B 83(19), 195433 (2011). https://doi.org/10.1103/physrevb.83.195433

    Article  ADS  Google Scholar 

  18. X.B. Xu et al., Tunable nanoscale confinement of energy and resonant edge effect in triangular gold nanoprisms (in English). J. Phys. Chem. C 117(34), 17748–17756 (2013). https://doi.org/10.1021/jp4051929

    Article  Google Scholar 

  19. E.P. Bellido, A. Manjavacas, Y. Zhang, Y. Cao, P. Nordlander, G.A. Botton, Electron energy-loss spectroscopy of multipolar edge and cavity modes in silver nanosquares (in English). Acs Photonics 3(3), 428–433 (2016). https://doi.org/10.1021/acsphotonics.5b00594

    Article  Google Scholar 

  20. N. Yamamoto, F.J.G. de Abajo, V. Myroshnychenko, Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy (in English). Phys. Rev. B 91(12), 125144 (2015). https://doi.org/10.1103/physrevb.91.125144

    Article  ADS  Google Scholar 

  21. N. Talebi et al., Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances (in English). ACS Nano 9(7), 7641–7648 (2015). https://doi.org/10.1021/acsnano.5b03024

    Article  MathSciNet  Google Scholar 

  22. S.R. Guo et al., Reflection and phase matching in plasmonic gold tapers (in English). Nano Lett. 16(10), 6137–6144 (2016). https://doi.org/10.1021/acs.nanolett.6b02353

    Article  ADS  Google Scholar 

  23. T. Coenen, S.V. den Hoedt, A. Polman, A new cathodoluminescence system for nanoscale optics, materials science, and geology. Microsc. Today 24(3), 12–19 (2016). https://doi.org/10.1017/S1551929516000377

    Article  Google Scholar 

  24. D.R. Glenn et al., Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours (in English). Sci. Rep. 2, 865 (2012). https://doi.org/10.1038/srep00865

    Article  Google Scholar 

  25. M. Kociak et al., Seeing and measuring in colours: electron microscopy and spectroscopies applied to nano-optics (in English). C. R. Phys. 15(2–3), 158–175 (2014). https://doi.org/10.1016/j.crhy.2013.10.003

    Article  ADS  Google Scholar 

  26. F.J.G. de Abajo et al., Plasmonic and new plasmonic materials: general discussion (in English). Faraday Discuss. 178, 123–149 (2015). https://doi.org/10.1039/c5fd90022k

    Article  ADS  Google Scholar 

  27. B. Barwick, D. J. Flannigan, A. H. Zewail (2009) Photon-induced near-field electron microscopy. Nature 462, 902. 12/17/online 2009, https://doi.org/10.1038/nature08662; https://www.nature.com/articles/nature08662#supplementary-information

    Article  ADS  Google Scholar 

  28. B. Barwick, A.H. Zewail, Photonics and plasmonics in 4D ultrafast electron microscopy (in English). Acs Photonics 2(10), 1391–1402 (2015). https://doi.org/10.1021/acsphotonics.5b00427

    Article  Google Scholar 

  29. S.T. Park, M.M. Lin, A.H. Zewail, Photon-induced near-field electron microscopy (PINEM): theoretical and experimental (in English). New J. Phys. 12, 123028 (2010). https://doi.org/10.1088/1367-2630/12/12/123028

    Article  ADS  Google Scholar 

  30. Y.M. Liu, X. Zhang, Metamaterials: a new frontier of science and technology (in English). Chem. Soc. Rev. 40(5), 2494–2507 (2011). https://doi.org/10.1039/c0cs00184h

    Article  Google Scholar 

  31. N. Engheta, R.W. Ziolkowski, A positive future for double-negative metamaterials (in English). IEEE Trans. Microw. Theor. 53(4), 1535–1556 (2005). https://doi.org/10.1109/Tmtt.2005.845188

    Article  Google Scholar 

  32. P. L. Kapitza, P. A. M. Dirac, The reflection of electrons from standing light waves (in English). Proc. Camb. Philos. Soc. 29, 297–300 (1993) [Online]. Available: <Go to ISI>: //WOS:000200163900030

    Article  Google Scholar 

  33. H. Batelaan, Colloquium: Illuminating the Kapitza-Dirac effect with electron matter optics (in English). Rev. Mod. Phys. 79(3), 929–941 (2007). https://doi.org/10.1103/revmodphys.79.929

    Article  ADS  Google Scholar 

  34. S.J. Wu, Y.J. Wang, Q. Diot, M. Prentiss, Splitting matter waves using an optimized standing-wave light-pulse sequence (in English). Phys. Rev. A 71(4), 043602 (2005). https://doi.org/10.1103/physreva.71.043602

    Article  ADS  Google Scholar 

  35. E.M. Rasel, M.K. Oberthaler, H. Batelaan, J. Schmiedmayer, A. Zeilinger, Atom wave interferometry with diffraction gratings of light (in English). Phys. Rev. Lett. 75(14), 2633–2637 (1995). https://doi.org/10.1103/PhysRevLett.75.2633

    Article  ADS  Google Scholar 

  36. A.G. Hayrapetyan, K.K. Grigoryan, J.B. Gotte, R.G. Petrosyan, Kapitza-Dirac effect with traveling waves (in English). New J. Phys. 17, 082002 (2015). https://doi.org/10.1088/1367-2630/17/8/082002

    Article  ADS  Google Scholar 

  37. D.L. Freimund, K. Aflatooni, H. Batelaan, Observation of the Kapitza-Dirac effect (in English). Nature 413(6852), 142–143 (2001). https://doi.org/10.1038/35093065

    Article  ADS  Google Scholar 

  38. A. Friedman, A. Gover, G. Kurizki, S. Ruschin, A. Yariv, Spontaneous and stimulated-emission from quasifree electrons (in English). Rev. Mod. Phys. 60(2), 471–535 (1988). https://doi.org/10.1103/RevModPhys.60.471

    Article  ADS  Google Scholar 

  39. A. Gover, P. Sprangle, A unified theory of magnetic Bremsstrahlung, electrostatic Bremsstrahlung, Compton-Raman Scattering, and Cerenkov-Smith-Purcell free-electron lasers (in English). IEEE J. Quantum Electron 17(7), 1196–1215 (1981). https://doi.org/10.1109/Jqe.1981.1071257

    Article  ADS  Google Scholar 

  40. P. Bucksbaum, T. Moller, K. Ueda, Frontiers of free-electron laser science (in English). J. Phys. B At. Mol. Opt. 46(16), 160201 (2013). https://doi.org/10.1088/0953-4075/46/16/160201

    Article  ADS  Google Scholar 

  41. R. Falcone, M. Dunne, H. Chapman, M. Yabashi, K. Ueda, Frontiers of free-electron laser science II (in English). J. Phys. B At. Mol. Opt. 49(18), 180201 (2016). https://doi.org/10.1088/0953-4075/49/18/180201

    Article  ADS  Google Scholar 

  42. Z. R. Huang, K. J. Kim, Review of x-ray free-electron laser theory (in English). Phys. Rev. Spec. Top. Ac. 10(3), 034801 (2007). https://doi.org/10.1103/physrevstab.10.034801

  43. B.W.J. McNeil, N.R. Thompson, X-ray free-electron lasers (in English). Nat. Photonics 4(12), 814–821 (2010). https://doi.org/10.1038/nphoton.2010.239

    Article  ADS  Google Scholar 

  44. D.B. Melrose, K.G. Ronnmark, R.G. Hewitt, Terrestrial kilometric radiation—the cyclotron theory (in English). J. Geophys. Res. Space 87(Na7), 5140–5150 (1982). https://doi.org/10.1029/Ja087ia07p05140

    Article  ADS  Google Scholar 

  45. D.M. Asner et al., Single-electron detection and spectroscopy via relativistic cyclotron radiation (in English). Phys. Rev. Lett. 114(16), 162501 (2015). https://doi.org/10.1103/physrevlett.114.162501

    Article  ADS  Google Scholar 

  46. V. L. Ginzburg, Radiation of uniformly moving sources (Vavilov-Cherenkov effect, transition radiation, and other phenomena) (in Russian). Usp Fiz Nauk+ 166(10), 1033–1042 (1996). [Online]. Available: <Go to ISI>://WOS:A1996VV43300001

    Google Scholar 

  47. R. Garciamolina, A. Grasmarti, A. Howie, R.H. Ritchie, Retardation effects in the interaction of charged-particle beams with bounded condensed media (in English). J. Phys. C Solid State 18(27), 5335–5345 (1985). https://doi.org/10.1088/0022-3719/18/27/019

    Article  ADS  Google Scholar 

  48. E. Kröger, Calculations of the energy losses of fast electrons in thin foils with retardation. Zeitschrift für Physik A Hadrons and Nuclei, Journal Article 216(2), 115–135 (1968). https://doi.org/10.1007/bf01390952

    Article  ADS  Google Scholar 

  49. P. A. Cherenkov, The spectrum of visible radiation produced by fast electrons (in English). C. R. Acad. Sci. Urss 20, 651–655 (1938). [Online]. Available: <Go to ISI>://WOS:000201891900170

    Google Scholar 

  50. P. A. Cherenkov, Absolute output of radiation caused by electrons moving within a medium with super-light velocity (in English). C. R. Acad. Sci. Urss 21, 116–121 (1938). [Online]. Available: <Go to ISI>://WOS:000201892000033

    Google Scholar 

  51. P. A. Cherenkov, Spatial distribution of visible radiation produced by fast electrons (in English). C. R. Acad. Sci. Urss 21, 319–321 (1938). [Online]. Available: <Go to ISI>://WOS:000201892000086

    Google Scholar 

  52. I. Frank, I. Tamm, Coherent visible radiation of fast electrons passing through matter (in English). C. R. Acad. Sci. Urss 14, 109–114 (1937). [Online]. Available: <Go to ISI>://WOS:000201973400025

    Google Scholar 

  53. W. Li, C.-X. Yu, S.-B. Liu, Quantum theory of Cherenkov radiation in an anisotropic absorbing media, vol. 7501, pp. 750108 (2009). [Online]. Available: http://dx.doi.org/10.1117/12.847455

  54. I. Kaminer et al., Quantum Čerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6(1), 011006 (2016). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevX.6.011006

  55. R. Matloob, A. Ghaffari, Cerenkov radiation in a causal permeable medium (in English). Phys. Rev. A 70(5), 052116 (2004). https://doi.org/10.1103/physreva.70.052116

    Article  ADS  Google Scholar 

  56. S.G. Chefranov, Relativistic generalization of the Landau criterion as a new foundation of the Vavilov-Cherenkov radiation theory (in English). Phys. Rev. Lett. 93(25), 254801 (2014). https://doi.org/10.1103/physrevlett.93.254801

    Article  ADS  Google Scholar 

  57. K. Tanha, A.M. Pashazadeh, B.W. Pogue, Review of biomedical Cerenkov luminescence imaging applications (in English). Biomed. Opt. Express 6(8), 3053–3065 (2015). https://doi.org/10.1364/Boe.6.003053

    Article  Google Scholar 

  58. M. Buchanan, Thesis: Minkowski, Abraham and the photon momentum. Nat. Phys. 3(2), 73–73 02//print 2007. [Online]. Available: http://dx.doi.org/10.1038/nphys519

  59. C. V. Festenberg, Energy loss measurements on III–V compounds. Zeitschrift für Physik, journal article 227(5), 453–481 (1969). https://doi.org/10.1007/bf01394892

    Article  Google Scholar 

  60. C.H. Chen, J. Silcox, R. Vincent, Electron-energy losses in silicon—bulk and surface Plasmons and Cerenkov Radiation (in English). Phys. Rev. B 12(1), 64–71 (1975). https://doi.org/10.1103/Physrevb.12.64

    Article  ADS  Google Scholar 

  61. M. Stoger-Pollach et al., Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis (in English). Micron 37(5), 396–402 (2006). https://doi.org/10.1016/j.micron.2006.01.001

    Article  Google Scholar 

  62. N. Talebi, Optical modes in slab waveguides with magnetoelectric effect (in English). J. Opt. UK 18(5), 055607 (2016). https://doi.org/10.1088/2040-8978/18/5/055607

    Article  ADS  Google Scholar 

  63. P. Schattschneider, Fundamentals of Inelastic Electron Scattering (Springer-Verlag, Wien, Austria, 1986)

    Book  Google Scholar 

  64. P. Li et al., Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015). https://doi.org/10.1038/ncomms8507; https://www.nature.com/articles/ncomms8507#supplementary-information

  65. V. Ginsburg, I. Frank, Radiation of a uniformly moving electron due to its transition from one medium into another (in Russian). Zh Eksp Teor Fiz+ 16(1), 15–28 (1946). [Online]. Available: <Go to ISI>://WOS:A1946YB70900002

    Google Scholar 

  66. V.L. Ginzburg, Transition radiation and transition scattering (in English). Phys. Scripta T2, 182–191 (1982). https://doi.org/10.1088/0031-8949/1982/T2a/024

    Article  ADS  Google Scholar 

  67. V.L. Ginzburg, V.N. Tsytovich, Several problems of the theory of transition radiation and transition scattering (in English). Phys. Rep. 49(1), 1–89 (1979). https://doi.org/10.1016/0370-1573(79)90052-8

    Article  ADS  Google Scholar 

  68. F.J.G. de Abajo, A. Rivacoba, N. Zabala, N. Yamamoto, Boundary effects in Cherenkov radiation (in English). Phys. Rev. B 69(15), 155420 (2004). https://doi.org/10.1103/physrevb.69.155420

    Article  ADS  Google Scholar 

  69. A. Losquin, M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states (in English). Acs Photonics 2(11), 1619–1627 (2015). https://doi.org/10.1021/acsphotonics.5b00416

    Article  Google Scholar 

  70. R.F. Egerton, Electron energy-loss spectroscopy in the TEM (in English). Rep. Prog Phys. 72(1), 016502 (2009). https://doi.org/10.1088/0034-4885/72/1/016502

    Article  ADS  Google Scholar 

  71. L. Wartski, S. Roland, J. Lasalle, M. Bolore, G. Filippi, Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple-scattering measurements (in English). J. Appl. Phys. 46(8), 3644–3653 (1975). https://doi.org/10.1063/1.322092

    Article  ADS  Google Scholar 

  72. R. Vincent, J. Silcox, Dispersion of radiative surface plasmons in aluminum films by electron-scattering (in English). Phys. Rev. Lett. 31(25), 1487–1490 (1973). https://doi.org/10.1103/PhysRevLett.31.1487

    Article  ADS  Google Scholar 

  73. N. Talebi, C. Ozsoy-Keskinbora, H.M. Benia, K. Kern, C.T. Koch, P.A. van Aken, Wedge Dyakonov waves and Dyakonov plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10(7), 6988–6994 (2016). https://doi.org/10.1021/acsnano.6b02968

    Article  Google Scholar 

  74. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, Quantum nanophotonics using hyperbolic metamaterials (in English). J. Opt. UK 14(6), 063001 (2012). https://doi.org/10.1088/2040-8978/14/6/063001

    Article  ADS  Google Scholar 

  75. L. Schachter, A. Ron, Smith-Purcell free-electron laser (in English). Phys. Rev. A 40(2), 876–896 (1989). https://doi.org/10.1103/PhysRevA.40.876

    Article  ADS  Google Scholar 

  76. M.H. Wang, X.G. Xiao, J.Y. Chen, Y.Y. Wei, Study on a novel Smith-Purcell free-electron laser (in English). Phys. Lett. A 345(4–6), 423–427 (2005). https://doi.org/10.1016/j.physleta.2005.07.020

    Article  ADS  Google Scholar 

  77. A.A. Govyadinov et al., Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope (in English). Nat. Commun. 8, 95 (2017). https://doi.org/10.1038/s41467-017-00056-y

    Article  ADS  Google Scholar 

  78. B. J. M. Brenny, A. Polman, F. J. García de Abajo, Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. Phys. Rev. B 94(15), 155412 (2016). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.94.155412

  79. L. Novotny, Strong coupling, energy splitting, and level crossings: a classical perspective (in English). Am. J. Phys. 78(11), 1199–1202 (2010). https://doi.org/10.1119/1.3471177

    Article  ADS  Google Scholar 

  80. S.R.K. Rodriguez, Classical and quantum distinctions between weak and strong coupling (in English). Eur. J. Phys. 37(2), 025802 (2016). https://doi.org/10.1088/0143-0807/37/2/025802

    Article  Google Scholar 

  81. S.J. Smith, E.M. Purcell, Visible light from localized surface charges moving across a grating (in English). Phys. Rev. 92(4), 1069–1069 (1953). https://doi.org/10.1103/PhysRev.92.1069

    Article  ADS  Google Scholar 

  82. P. Goldsmith, J.V. Jelley, Optical transition radiation from protons entering metal surfaces (in English). Philos. Mag. 4(43), 836–844 (1959). https://doi.org/10.1080/14786435908238241

    Article  ADS  Google Scholar 

  83. J.M. Wachtel, Free-electron lasers using the Smith-Purcell Effect (in English). J. Appl. Phys. 50(1), 49–56 (1979). https://doi.org/10.1063/1.325642

    Article  ADS  Google Scholar 

  84. R.P. Leavitt, D.E. Wortman, C.A. Morrison, Orotron—free-electron laser using the Smith-Purcell Effect (in English). Appl. Phys. Lett. 35(5), 363–365 (1979). https://doi.org/10.1063/1.91151

    Article  ADS  Google Scholar 

  85. J. Urata, M. Goldstein, M.F. Kimmitt, A. Naumov, C. Platt, J.E. Walsh, Superradiant Smith-Purcell emission (in English). Phys. Rev. Lett. 80(3), 516–519 (1998). https://doi.org/10.1103/PhysRevLett.80.516

    Article  ADS  Google Scholar 

  86. G. Adamo et al., Light well: a tunable free-electron light source on a chip (in English). Phys. Rev. Lett. 103(11), 113901 (2009). https://doi.org/10.1103/physrevlett.103.113901

    Article  ADS  Google Scholar 

  87. F.J.G. de Abajo, Smith-Purcell radiation emission in aligned nanoparticles (in English). Phys. Rev. E 61(5), 5743–5752 (2000). https://doi.org/10.1103/PhysRevE.61.5743

    Article  ADS  Google Scholar 

  88. N. Talebi, A directional, ultrafast and integrated few-photon source utilizing the interaction of electron beams and plasmonic nanoantennas. New J. Phys. 16(5), 053021 (2014). https://doi.org/10.1088/1367-2630/16/5/053021

    Article  ADS  Google Scholar 

  89. A. Gover, Y. Pan, Stimulated radiation interaction of a single electron quantum wavepacket. ArXiv e-prints 1702. [Online]. Available: http://adsabs.harvard.edu/abs/2017arXiv170206394G

  90. H.L. Andrews, C.H. Boulware, C.A. Brau, J.D. Jarvis, Superradiant emission of Smith-Purcell radiation (in English). Phys. Rev. Spec. Top. Ac. 8(11), 110702 (2005). https://doi.org/10.1103/physrevstab.8.110702

    Article  ADS  Google Scholar 

  91. R.H. Dicke, Coherence in spontaneous radiation processes (in English). Phys. Rev. 93(1), 99–110 (1954). https://doi.org/10.1103/Physrev.93.99

    Article  ADS  MATH  Google Scholar 

  92. R.M. Phillips, History of the Ubitron (in English). Nucl. Instrum. Meth. A 272(1–2), 1–9 (1988). https://doi.org/10.1016/0168-9002(88)90185-4

    Article  ADS  Google Scholar 

  93. J.M.J. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field (in English). J. Appl. Phys. 42(5), 1906–1913 (1971). https://doi.org/10.1063/1.1660466

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talebi, N. (2019). Electron-Light Interactions. In: Near-Field-Mediated Photon–Electron Interactions. Springer Series in Optical Sciences, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-33816-9_3

Download citation

Publish with us

Policies and ethics