Skip to main content

Application of Nanotechnology in Diagnosis and Therapeutics

  • Chapter
  • First Online:
Nanotechnology for Energy and Environmental Engineering

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The rapid advances in nanotechnology have paved way toward a sustainable path by providing innovative solutions with the issues related to ecosystem as well as human health. In terms of human healthcare and therapy, nanoparticles are expected to contribute to drug delivery and regenerative medicine with its ability to target the source of disease with increased efficiency and minimal side effects. Thus by miniaturizing the drug delivery systems, treatment of several diseases can be made possible. Nanomedicine offers several advantages, such as protection of the payload from degradation in both in vitro and in vivo milieu, facilitation of controlled release of entrapped drugs, prolonged therapeutic effect, and enhancement of targeted delivery along with diminished side effects. Nanotechnology has proved to address some of the problems related to diagnostics, therapeutics, and biomedical aspects. Accordingly, this chapter mainly emphasizes on the evolution of nanoparticles to meet the challenges relevant to healthcare system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183

    Article  CAS  Google Scholar 

  • Ahn C-H, Chae SY, Bae YH, Kim SW (2002) Biodegradable poly (ethylenimine) for plasmid DNA delivery. J Control Release 80:273–282

    Google Scholar 

  • Ahn J-H et al (2011) Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis. Nano Lett 11:2743–2752

    Google Scholar 

  • Aigner A, Fischer D, Merdan T, Brus C, Kissel T, Czubayko F (2002) Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther 9:1700

    Google Scholar 

  • Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH (2010) Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 18:381–388

    Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Google Scholar 

  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 459–461

    Google Scholar 

  • Anitha A, Maya S, Deepa N, Chennazhi K, Nair S, Jayakumar R (2012) Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed 23:1381–1400

    CAS  Google Scholar 

  • Arnida M, Ray A, Peterson C, Ghandehari H (2011) Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 77:417

    Article  CAS  Google Scholar 

  • AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM (2014) Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 15:1598–1602

    Article  CAS  Google Scholar 

  • Bandyopadhyay P, Ma X, Linehan-Stieers C, Kren BT, Steer CJ (1999) Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor. J Biol Chem 274:10163–10172

    Article  CAS  Google Scholar 

  • Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  CAS  Google Scholar 

  • Bernkop-Schnürch A, Kast C, Guggi D (2003) Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release 93:95–103

    Article  CAS  Google Scholar 

  • Bhavsar D, Subramanian K, Sethuraman S, Maheswari Krishnan U (2012) Translational siRNA therapeutics using liposomal carriers: prospects & challenges. Curr Gene Ther 12:315–332

    Article  CAS  Google Scholar 

  • Biswas AK, Islam MR, Choudhury ZS, Mostafa A, Kadir MF (2014) Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci: Nanosci Nanotechnol 5:043001

    Google Scholar 

  • Bivas-Benita M et al (2009) Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 27:4010–4017

    Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr J-P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–7301

    Article  CAS  Google Scholar 

  • Boylan NJ, Suk JS, Lai SK, Jelinek R, Boyle MP, Cooper MJ, Hanes J (2012) Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation. J Control Release 157:72–79

    Google Scholar 

  • Brunner S, Fürtbauer E, Sauer T, Kursa M, Wagner E (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5:80–86

    Article  CAS  Google Scholar 

  • Brunner S, Sauer T, Carotta Sea, Cotten M, Saltik M, Wagner E 2000 Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 7:401

    Google Scholar 

  • Calvo P, Alonso MJ, Vila‐Jato JL, Robinson JR (1996) Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 48:1147–1152

    Article  CAS  Google Scholar 

  • Calvo P, Vila-Jato JL, Alonso MaJ (1997) Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm 153:41–50

    Article  CAS  Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci 103:4930–4934

    Article  CAS  Google Scholar 

  • Chang JH et al (2006) Characterization and formation of phospholipid nanoemulsion coatings on Mg-modified sericite surface. J Ind Eng Chem 12:635–638

    Google Scholar 

  • Chen C-C, Tsai T-H, Huang Z-R, Fang J-Y (2010) Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 74:474–482

    Article  CAS  Google Scholar 

  • Chen F, Zhang Z-R, Yuan F, Qin X, Wang M, Huang Y (2008a) In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm 349:226–233

    Google Scholar 

  • Chen J et al (2008b) Galactose-poly (ethylene glycol)-polyethylenimine for improved lung gene transfer. Biochem Biophys Res Commun 375:378–383

    Google Scholar 

  • Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE (2009) Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 6:1343–1352

    Article  CAS  Google Scholar 

  • Chumakova OV et al (2008) Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett 261:215–225

    Article  CAS  Google Scholar 

  • Crucho CI, Barros MT (2015) Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer 68:41–46

    Article  CAS  Google Scholar 

  • Dalhaimer P, Bates FS, Discher DE (2003) Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules 36:6873–6877

    Google Scholar 

  • Dalhaimer P, Bermudez H, Discher D (2004) Biopolymer mimicry with polymeric worm-like micelles: MW-scaled flexibility, locked-in curvature, and coexisting microphases. In: Abstracts of papers of the American chemical society, 2004. Amer chemical soc 1155 16th St, NW, Washington, DC 20036 USA, pp U543–U544

    Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  Google Scholar 

  • De La Zerda A et al (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557

    Article  CAS  Google Scholar 

  • Decuzzi P, Godin B, Tanaka T, Lee S-Y, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327

    Article  CAS  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469

    Article  CAS  Google Scholar 

  • Dube A, Reynolds JL, Law W-C, Maponga CC, Prasad PN, Morse GD (2014) Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomed Nanotechnol Biol Med 10:831–838

    Article  CAS  Google Scholar 

  • Elias DR, Poloukhtine A, Popik V, Tsourkas A (2013) Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine: Nanotechnol Biol Med 9:194–201

    Google Scholar 

  • Elsabahy M, Nazarali A, Foldvari M (2011) Non-viral nucleic acid delivery: key challenges and future directions. Curr Drug Deliv 8:235–244

    Article  CAS  Google Scholar 

  • Essex S, Navarro G, Sabhachandani P, Chordia A, Trivedi M, Movassaghian S, Torchilin VP (2015) Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther 22:257

    Article  CAS  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on small medicine: the state of nanomedicine products approved for use or in clinical trials. Nanomedicine: Nanotechnol Biol Med 9:1

    Google Scholar 

  • Fan S et al (2018) Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 25:1091–1102

    Google Scholar 

  • Farlow MR (2001) Pharmacokinetic profiles of current therapies for Alzheimer’s disease: implications for switching to galantamine. Clin Ther 23:A13–A24

    Article  CAS  Google Scholar 

  • Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571

    Google Scholar 

  • Gao Y, Liu X-L, Li X-R (2011) Research progress on siRNA delivery with nonviral carriers. Int J Nanomed 6:1017

    Article  CAS  Google Scholar 

  • Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I (2009) Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym 77:599–606

    Google Scholar 

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249

    Article  CAS  Google Scholar 

  • Gonzalez-Pizarro R, Silva-Abreu M, Calpena AC, Egea MA, Espina M, García ML (2018) Development of fluorometholone-loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye. Int J Pharm 547:338–346

    Article  CAS  Google Scholar 

  • Goula D, Remy J, Erbacher P, Wasowicz M, Levi G, Abdallah B, Demeneix B (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5:712

    Google Scholar 

  • Grosse S et al (2008) In vivo gene delivery in the mouse lung with lactosylated polyethylenimine, questioning the relevance of in vitro experiments. J Control Release 132:105–112

    Google Scholar 

  • Guo J, Fisher KA, Darcy R, Cryan JF, O’Driscoll C (2010) Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol BioSyst 6:1143–1161

    CAS  Google Scholar 

  • Harris JM, Martin NE, Modi M (2001) Pegylation. Clin Pharmacokinet 40:539–551

    Article  CAS  Google Scholar 

  • Hayder M et al (2011) A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med 3:81ra35–81ra35

    Google Scholar 

  • Heller DA, Jeng ES, Yeung T-K, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311:508–511

    Article  CAS  Google Scholar 

  • Hoeller S, Sperger A, Valenta C (2009) Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm 370:181–186

    Article  CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy

    Google Scholar 

  • Hwang H-Y, Kim I-S, Kwon IC, Kim Y-H (2008) Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 128:23–31

    Article  CAS  Google Scholar 

  • Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 28:1–45

    Google Scholar 

  • Jain V, Gupta A, Pawar VK, Asthana S, Jaiswal AK, Dube A, Chourasia MK (2014) Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol 174:1309–1330

    Article  CAS  Google Scholar 

  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MaJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73:255–267

    Article  CAS  Google Scholar 

  • Jeong YI, Cho CS, Kim SH, Ko KS, Kim SI, Shim YH, Nah JW (2001) Preparation of poly (DL‐lactide‐co‐glycolide) nanoparticles without surfactant. J Appl Polym Sci 80:2228–2236

    Google Scholar 

  • Jiang G et al. (2008a) Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolym: Orig Res Biomol 89:635–642

    Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2008b) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145

    Google Scholar 

  • Joshi HM, Bhumkar DR, Joshi K, Pokharkar V, Sastry M (2006) Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22:300–305

    Article  CAS  Google Scholar 

  • Kabanov A, Gendelman HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 32:1054–1082

    Article  CAS  Google Scholar 

  • Kalani M, Yunus R (2012) Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method. Int J Nanomed 7:2165–2172

    Article  CAS  Google Scholar 

  • Kaminskas LM et al (2012) Doxorubicin-conjugated PEGylated dendrimers show similar tumoricidal activity but lower systemic toxicity when compared to PEGylated liposome and solution formulations in mouse and rat tumor models. Mol Pharm 9:422–432

    Article  CAS  Google Scholar 

  • Kao HJ, Lo YL, Lin HR, Yu SP (2006) Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J Pharm Pharmacol 58:179–186

    Article  CAS  Google Scholar 

  • Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729

    Article  CAS  Google Scholar 

  • Kichler A, Chillon M, Leborgne C, Danos O, Frisch B (2002) Intranasal gene delivery with a polyethylenimine–PEG conjugate. J Control Release 81:379–388

    Google Scholar 

  • Kleemann E et al (2005) Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG–PEI. J Control Release 109:299–316

    Google Scholar 

  • Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96:203–209

    Article  CAS  Google Scholar 

  • Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18

    Article  CAS  Google Scholar 

  • Kutscher HL et al (2010) Enhanced passive pulmonary targeting and retention of PEGylated rigid microparticles in rats. Int J Pharm 402:64–71

    Article  CAS  Google Scholar 

  • Lamprecht A, Ubrich N, Pérez MH, Lehr C-M, Hoffman M, Maincent P (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification International. J Pharm 184:97–105

    Google Scholar 

  • Liebler DC, Guengerich FP (2005) Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov 4:410–420

    Article  CAS  Google Scholar 

  • Lin H-R, Yu S-P, Kuo C-J, Kao H-J, Lo Y-L, Lin Y-J (2007) Pilocarpine-loaded chitosan-PAA nanosuspension for ophthalmic delivery. J Biomater Sci Polym Ed 18:205–221

    Article  CAS  Google Scholar 

  • Lin Y-H, Tsai S-C, Lai C-H, Lee C-H, He ZS, Tseng G-C (2013) Genipin-cross-linked fucose–chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials 34:4466–4479

    Google Scholar 

  • Liu Y, Nguyen J, Steele T, Merkel O, Kissel T (2009) A new synthesis method and degradation of hyper-branched polyethylenimine grafted polycaprolactone block mono-methoxyl poly (ethylene glycol) copolymers (hy-PEI-g-PCL-b-mPEG) as potential DNA delivery vectors. Polymer 50:3895–3904

    Google Scholar 

  • Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397

    Google Scholar 

  • Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anti-Cancer Drugs 10:767–776

    Google Scholar 

  • Masood F, Chen P, Yasin T, Fatima N, Hasan F, Hameed A (2013) Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater Sci Eng C 33:1054–1060

    Google Scholar 

  • Meng J et al (2008) Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4:1364–1370

    Article  CAS  Google Scholar 

  • Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci 93:12349–12354

    Article  CAS  Google Scholar 

  • Muro S et al (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16:1450–1458

    Google Scholar 

  • Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194

    Article  CAS  Google Scholar 

  • Narayanan S, Binulal N, Mony U, Manzoor K, Nair S, Menon D (2010) Folate targeted polymeric ‘green’ nanotherapy for cancer. Nanotechnology 21:285107

    Google Scholar 

  • Nguyen H et al (2000) Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther 7:126–138

    Google Scholar 

  • Onoshima D, Yukawa H, Baba Y (2015) Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 95:2–14

    Article  CAS  Google Scholar 

  • Onoue S, Yamada S, Chan H-K (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomed 9:1025–1032

    Google Scholar 

  • Panchapakesan B, Lu S, Sivakumar K, Taker K, Cesarone G, Wickstrom E (2005) Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBiotechnology 1:133–139

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  CAS  Google Scholar 

  • Park JS et al (2006) N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release 115:37–45

    Google Scholar 

  • Patel J, Garala K, Basu B, Raval M, Dharamsi A (2011) Solubility of aceclofenac in polyamidoamine dendrimer solutions. Int J Pharm Investig 1:135–138

    Article  CAS  Google Scholar 

  • Patil S, Lalani R, Bhatt P, Vhora I, Patel V, Patel H, Misra A (2018) Hydroxyethyl substituted linear polyethylenimine for safe and efficient delivery of siRNA therapeutics RSC. Advances 8:35461–35473

    CAS  Google Scholar 

  • Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607

    Article  CAS  Google Scholar 

  • Perez EA (2009) Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer. Breast Cancer Res Treat 114:195

    Google Scholar 

  • Plank C, Mechtler K, Szoka FC Jr, Wagner E (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 7:1437–1446

    Article  CAS  Google Scholar 

  • Price CF et al (2011) SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One 6:e24095

    Google Scholar 

  • Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci 97:3518–3590

    Article  CAS  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21

    Article  CAS  Google Scholar 

  • Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V (1985) Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316:817–819

    Article  CAS  Google Scholar 

  • Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C (2011) Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 152:208–231

    Article  CAS  Google Scholar 

  • Sánchez-López E et al (2018) Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnol 16:32

    Article  CAS  Google Scholar 

  • Schliecker G, Schmidt C, Fuchs S, Kissel T (2003) Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 24:3835–3844

    Google Scholar 

  • Shah M, Naseer MI, Choi MH, Kim MO, Yoon SC (2010) Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: preparation, characterization and in vitro evaluation. Int J Pharm 400:165–175

    Google Scholar 

  • Siegel SJ, Kahn JB, Metzger K, Winey KI, Werner K, Dan N (2006) Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm 64:287–293

    Article  CAS  Google Scholar 

  • Song X et al (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 350:320–329

    Article  CAS  Google Scholar 

  • Staples M, Daniel K, Cima MJ, Langer R (2006) Application of micro-and nano-electromechanical devices to drug delivery. Pharm Res 23:847–863

    Article  CAS  Google Scholar 

  • Sung S-J, Min SH, Cho KY, Lee S, Min Y-J, Yeom YI, Park J-K (2003) Effect of polyethylene glycol on gene delivery of polyethylenimine. Biol Pharm Bull 26:492–500

    Article  CAS  Google Scholar 

  • Tang G et al (2003) Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 24:2351–2362

    Article  CAS  Google Scholar 

  • Tang X, Liang Y, Feng X, Zhang R, Jin X, Sun L (2015) Co-delivery of docetaxel and Poloxamer 235 by PLGA–TPGS nanoparticles for breast cancer treatment. Mater Sci Eng C 49:348–355

    Google Scholar 

  • Thomas M et al (2012) PEI-complexed LNA antiseeds as miRNA inhibitors. RNA Biol 9:1088–1098

    Article  CAS  Google Scholar 

  • Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, Baker JR Jr (2011) Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 63:2671–2680

    Article  CAS  Google Scholar 

  • Tong WY et al (2018) Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J Nanobiotechnol 16:38

    Google Scholar 

  • Tortorella S, Karagiannis TC (2014) Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol 247:291–307

    Article  CAS  Google Scholar 

  • Tosi G et al (2011) Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine 6:423–436

    Google Scholar 

  • Van Butsele K et al (2009) Synthesis and pH-dependent micellization of diblock copolymer mixtures. J Colloid Interface Sci 329:235–243

    Article  CAS  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Benoit J-P (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373

    Article  CAS  Google Scholar 

  • Wang B et al (2010) Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm 395:298–308

    Article  CAS  Google Scholar 

  • Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35

    Google Scholar 

  • Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, Wagner E (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 3:362–372

    Article  CAS  Google Scholar 

  • Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045

    Article  CAS  Google Scholar 

  • Wind N, Holen I (2011) Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer, Article ID 967419

    Google Scholar 

  • Wong KK, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm 1:125–131

    Article  CAS  Google Scholar 

  • Xiong F, Mi Z, Gu N (2011) Cationic liposomes as gene delivery system: transfection efficiency and new application. Die Pharm-An Int J Pharm Sci 66:158–164

    CAS  Google Scholar 

  • Yaméogo JB et al (2014) Self-assembled biotransesterified cyclodextrins as potential Artemisinin nanocarriers. II: In vitro behavior toward the immune system and in vivo biodistribution assessment of unloaded nanoparticles. Eur J Pharm Biopharm 88:683–694

    Google Scholar 

  • Yang K, Ma Y-Q (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583

    Article  CAS  Google Scholar 

  • Yang X, Zhang Q, Wang Y, Chen H, Zhang H, Gao F, Liu L (2008) Self-aggregated nanoparticles from methoxy poly (ethylene glycol)-modified chitosan: synthesis; characterization; aggregation and methotrexate release in vitro. Colloids Surf B: Biointerfaces 61:125–131

    Google Scholar 

  • Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003

    Google Scholar 

  • Yoneki N et al (2015) One-pot facile preparation of PEG-modified PLGA nanoparticles: effects of PEG and PLGA on release properties of the particles. Colloids Surf A 469:66–72

    Article  CAS  Google Scholar 

  • Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535

    Google Scholar 

  • Yuan H, Li J, Bao G, Zhang S (2010) Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett 105:138101

    Article  CAS  Google Scholar 

  • Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  CAS  Google Scholar 

  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    Google Scholar 

  • Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 5:309–319

    Article  CAS  Google Scholar 

  • Zhao Z, Li Y, Zhang Y, Chen A-Z, Li G, Zhang J, Xie M-B (2014) Development of silk fibroin modified poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) nanoparticles in supercritical CO2. Powder Technol 268:118–125

    Google Scholar 

  • Zhou Z et al (2013) Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials 34:5722–5735

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Nimesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mankamna Kumari, R., Goswami, R., Nimesh, S. (2020). Application of Nanotechnology in Diagnosis and Therapeutics. In: Ledwani, L., Sangwai, J. (eds) Nanotechnology for Energy and Environmental Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-33774-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33774-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33773-5

  • Online ISBN: 978-3-030-33774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics